-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpp.c
157 lines (136 loc) · 3.42 KB
/
pp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <libgen.h>
#define MAXN 26
// ppoly[i] is a primitive polynomial of degree i over GF(2)
const unsigned int ppoly[] = {-1, -1, 07, 013, 023, 045, 0103, 0211, 0435, 01021, 02011, 04005, 010123, 020033, 042103, 0100003, 0210013, 0400011, 01000201, 02000047, 04000011, 010000005, 020000003, 040000041, 0100000207, 0200000011};
unsigned int mat[MAXN][MAXN], A[MAXN][MAXN];
char v[1<<(MAXN-1)];
int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
}
void swap(unsigned int *a, unsigned int *b) {
unsigned int t = *a;
*a = *b;
*b = t;
}
// A = A * B
void matrix_mul(int n, unsigned int A[][MAXN], unsigned int B[][MAXN]) {
unsigned int T[MAXN][MAXN];
int i, j, k;
for (i=0; i<n; ++i) for (j=0; j<n; ++j) {
T[i][j] = 0;
for (k=0; k<n; ++k) {
T[i][j] ^= A[i][k] * B[k][j];
}
}
for (i=0; i<n; ++i) for (j=0; j<n; ++j) {
A[i][j] = T[i][j];
}
}
void human_readable(int deg, unsigned int poly) {
int i;
for (i=deg; i>0; --i) if (poly & 1 << i) {
printf("x^%d + ", i);
}
printf("1\n");
}
unsigned int char_poly(int n, unsigned int mat[][MAXN]) {
int i, j, k;
unsigned int t[MAXN][MAXN], u[MAXN][MAXN];
unsigned int ret;
// Householder reduction to Hessenberg form
for (i=0; i<n; ++i) for (j=0; j<n; ++j) {
u[i][j] = mat[i][j];
}
for (i=1; i<n; ++i) {
for (j=i; j<n; ++j) if (u[j][i-1]) break;
if (j == n) continue;
for (k=0; k<n; ++k) swap(u[j]+k, u[i]+k);
for (k=0; k<n; ++k) swap(u[k]+j, u[k]+i);
for (j=i+1; j<n; ++j) if (u[j][i-1]) {
for (k=i-1; k<n; ++k) u[j][k] ^= u[i][k];
for (k=0; k<n; ++k) u[k][i] ^= u[k][j];
}
}
for (j=n-1; j>=0; --j) {
for (i=0; i<=j; ++i) {
for (k=n-j-2; k>=0; --k) {
t[k+1][i] = (u[i][j] * t[k][j+1]) ^ (u[j+1][j] * t[k][i]);
}
t[0][i] = u[i][j];
}
for (k=0; k<n-j-1; ++k) {
t[k][j] ^= t[k][j+1];
}
}
ret = 1;
for (i=0; i<n; ++i) {
ret = (ret << 1) + t[i][0];
}
return ret;
}
// deg: the degree of primitive polynomial
// h: print in a human readable way or a bit compressed way
void pp(int deg, int h) {
int i, j, n;
unsigned int cur;
// A is the companion matrix of ppoly[deg]
cur = ppoly[deg];
memset(A, 0, sizeof(A));
for (i=0; i<deg; ++i) {
A[i][deg-1] = !!(cur & 1 << i);
}
for (i=1; i<deg; ++i) {
A[i][i-1] = 1;
}
for (i=0; i<deg; ++i) for (j=0; j<deg; ++j) {
mat[i][j] = A[i][j];
}
n = (1 << deg) - 1;
memset(v, 0, (n>>1)*sizeof(char));
for (i=1; i<n; ++i) {
if (!v[i] && gcd(i, n) == 1) {
cur = char_poly(deg, mat);
if (h) {
human_readable(deg, cur);
} else {
printf("%u\n", cur);
}
// mark all conjungate roots
for (j=i; !v[j]; j=(j<<1)%n) {
v[j] = 1;
}
}
matrix_mul(deg, mat, A);
}
}
void usage(char name[]) {
printf("calculate primitive polynomial over GF(2) of the given degree\n");
printf("usage: %s degree [-H]\n\n", basename(name));
printf("\tdegree: the degree of the primitive polynomial\n");
printf("\t-H(uman-readable) print in a readable way\n");
}
int main(int argc, char *argv[]) {
int deg, i, H;
if (argc < 2 || argc > 3) {
usage(argv[0]);
return 1;
}
if (argc == 3) {
if (strcmp(argv[2], "-H") != 0 && strcmp(argv[2], "-h") != 0) {
usage(argv[0]);
return 1;
}
}
deg = 0;
for (i=0; argv[1][i]; ++i) {
assert('0' <= argv[1][i] && argv[1][i] <= '9');
deg = deg * 10 + argv[1][i] - '0';
}
assert(2 <= deg && deg <= MAXN);
H = argc == 3 && strcmp(argv[2], "-H") == 0;
pp(deg, H);
return 0;
}