-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencrypt.c
503 lines (421 loc) · 12.6 KB
/
encrypt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/**
* @file
*
* Implementation of the lattice-based encryption scheme.
*
* @ingroup commit
*/
#include "param.h"
#include "test.h"
#include "bench.h"
#include "encrypt.h"
/*============================================================================*/
/* Private definitions */
/*============================================================================*/
/* The large modulus for the encryption scheme. */
#define Q "72057594037928893"
#define Q0 "29973109198516688"
#define Q1 "42084484839412205"
#define Q2 "36028797018964446"
/* Prime modulus for defining commitment ring. */
static fmpz_t p;
/* Prime modulus for defining encryption ring. */
static fmpz_t q;
/** Context for arithmetic modulo q. */
static fmpz_mod_ctx_t ctx_q;
/** Context for arithmetic modulo p. */
static fmpz_mod_ctx_t ctx_p;
/* Polynomial defining the cyclotomic ring. */
static fmpz_mod_poly_t large_poly, poly;
/* Pairs of irreducible polynomials for CRT representation. */
static qcrt_poly_t irred;
/* Inverses of the irreducible polynomials for CRT reconstruction. */
static qcrt_poly_t inv;
/*============================================================================*/
/* Public definitions */
/*============================================================================*/
/* Recover polynomial from CRT representation. */
void qcrt_poly_rec(fmpz_mod_poly_t c, qcrt_poly_t a) {
fmpz_mod_poly_t t;
fmpz_mod_poly_init(t, ctx_q);
fmpz_mod_poly_sub(t, a[0], a[1], ctx_q);
fmpz_mod_poly_mul(t, t, inv[1], ctx_q);
fmpz_mod_poly_mul(c, t, irred[1], ctx_q);
fmpz_mod_poly_add(c, c, a[1], ctx_q);
fmpz_mod_poly_mul(t, irred[0], irred[1], ctx_q);
fmpz_mod_poly_rem(c, c, t, ctx_q);
fmpz_mod_poly_clear(t, ctx_q);
}
// Sample short element.
void encrypt_sample_short(fmpz_mod_poly_t r, fmpz_mod_ctx_t ctx) {
uint64_t buf;
fmpz_t coeff;
fmpz_init(coeff);
fmpz_mod_poly_zero(r, ctx);
fmpz_mod_poly_fit_length(r, DEGREE, ctx);
for (int i = 0; i < DEGREE; i += 32) {
getrandom(&buf, sizeof(buf), 0);
for (int j = 0; j < 64; j += 2) {
fmpz_set_ui(coeff, ((buf >> (j + 1)) & 1));
if ((buf >> j) & 1) {
fmpz_neg(coeff, coeff);
}
fmpz_mod_poly_set_coeff_fmpz(r, (i + j / 2) % DEGREE, coeff, ctx);
}
}
fmpz_clear(coeff);
}
// Sample short element in CRT representation.
void encrypt_sample_short_crt(fmpz_mod_poly_t r[2], fmpz_mod_ctx_t ctx) {
fmpz_mod_poly_t t;
fmpz_mod_poly_init(t, ctx);
encrypt_sample_short(t, ctx);
fmpz_mod_poly_rem(r[0], t, irred[0], ctx);
fmpz_mod_poly_rem(r[1], t, irred[1], ctx);
fmpz_mod_poly_clear(t, ctx);
}
// Initialize encryption scheme.
void encrypt_setup() {
fmpz_t q0, q1;
fmpz_init(p);
fmpz_init(q);
fmpz_init(q0);
fmpz_init(q1);
fmpz_set_ui(p, MODP);
fmpz_set_str(q, Q, 10);
fmpz_set_str(q0, Q0, 10);
fmpz_set_str(q1, Q1, 10);
fmpz_mod_ctx_init(ctx_p, p);
fmpz_mod_ctx_init(ctx_q, q);
fmpz_mod_poly_init(poly, ctx_p);
fmpz_mod_poly_init(large_poly, ctx_q);
for (int i = 0; i < 2; i++) {
fmpz_mod_poly_init(irred[i], ctx_q);
fmpz_mod_poly_init(inv[i], ctx_q);
}
// Initialize cyclotomic polynomial (x^N + 1) over F_p
fmpz_mod_poly_set_coeff_ui(poly, DEGREE, 1, ctx_p);
fmpz_mod_poly_set_coeff_ui(poly, 0, 1, ctx_p);
// Initialize cyclotomic polynomial (x^N + 1) over F_q
fmpz_mod_poly_set_coeff_ui(large_poly, DEGREE, 1, ctx_q);
fmpz_mod_poly_set_coeff_ui(large_poly, 0, 1, ctx_q);
// Initialize each factor as well.
fmpz_mod_poly_set_coeff_ui(irred[0], DEGCRT, 1, ctx_q);
fmpz_mod_poly_set_coeff_fmpz(irred[0], 0, q0, ctx_q);
fmpz_mod_poly_set_coeff_ui(irred[1], DEGCRT, 1, ctx_q);
fmpz_mod_poly_set_coeff_fmpz(irred[1], 0, q1, ctx_q);
fmpz_mod_poly_invmod(inv[0], irred[0], irred[1], ctx_q);
fmpz_mod_poly_invmod(inv[1], irred[1], irred[0], ctx_q);
fmpz_clear(q0);
fmpz_clear(q1);
}
// Return small modulus p.
fmpz_t *encrypt_modulus() {
return &p;
}
// Return large modulus q.
fmpz_t *encrypt_large_modulus() {
return &q;
}
// Return small modulus p.
fmpz_mod_ctx_t *encrypt_modulus_ctx() {
return &ctx_p;
}
// Return large modulus q.
fmpz_mod_ctx_t *encrypt_large_modulus_ctx() {
return &ctx_q;
}
// Return cyclotomic polynomial.
fmpz_mod_poly_t *encrypt_large_poly() {
return &large_poly;
}
// Return cyclotomic polynomial.
fmpz_mod_poly_t *encrypt_poly() {
return &poly;
}
// Return irreducible polynomials for CRT representation.
fmpz_mod_poly_t *encrypt_irred(int i) {
return &irred[i];
}
// Finalize encryption scheme.
void encrypt_finish() {
fmpz_mod_poly_clear(poly, ctx_p);
fmpz_mod_poly_clear(large_poly, ctx_q);
for (int i = 0; i < 2; i++) {
fmpz_mod_poly_clear(irred[i], ctx_q);
fmpz_mod_poly_clear(inv[i], ctx_q);
}
fmpz_mod_ctx_clear(ctx_p);
fmpz_mod_ctx_clear(ctx_q);
fmpz_clear(p);
fmpz_clear(q);
}
// Generate a key pair.
void encrypt_keygen(publickey_t *pk, privatekey_t *sk, flint_rand_t rand) {
fmpz_mod_poly_t t;
fmpz_mod_poly_init(t, ctx_q);
for (int i = 0; i < DIM; i++) {
for (int j = 0; j < 2; j++) {
fmpz_mod_poly_init(sk->s1[i][j], ctx_q);
fmpz_mod_poly_init(sk->s2[i][j], ctx_q);
}
encrypt_sample_short_crt(sk->s1[i], ctx_q);
encrypt_sample_short_crt(sk->s2[i], ctx_q);
}
for (int i = 0; i < DIM; i++) {
for (int j = 0; j < DIM; j++) {
fmpz_mod_poly_init(pk->t[i][j], ctx_q);
fmpz_mod_poly_zero(pk->t[i][j], ctx_q);
for (int k = 0; k < 2; k++) {
fmpz_mod_poly_init(pk->A[i][j][k], ctx_q);
fmpz_mod_poly_randtest(pk->A[i][j][k], rand, DEGCRT, ctx_q);
}
}
for (int k = 0; k < 2; k++) {
fmpz_mod_poly_add(pk->t[i][k], pk->t[i][k], sk->s2[i][k], ctx_q);
}
}
// Compute (A, t = As_1 + s_2).
for (int i = 0; i < DIM; i++) {
for (int j = 0; j < DIM; j++) {
for (int k = 0; k < 2; k++) {
fmpz_mod_poly_mulmod(t, pk->A[i][j][k], sk->s1[j][k], irred[k],
ctx_q);
fmpz_mod_poly_add(pk->t[i][k], pk->t[i][k], t, ctx_q);
}
}
}
fmpz_mod_poly_clear(t, ctx_q);
}
// Free key pair.
void encrypt_keyfree(publickey_t *pk, privatekey_t *sk) {
for (int i = 0; i < DIM; i++) {
for (int j = 0; j < DIM; j++) {
fmpz_mod_poly_clear(pk->t[i][j], ctx_q);
for (int k = 0; k < 2; k++) {
fmpz_mod_poly_clear(pk->A[i][j][k], ctx_q);
}
}
for (int k = 0; k < 2; k++) {
fmpz_mod_poly_clear(sk->s1[i][k], ctx_q);
fmpz_mod_poly_clear(sk->s2[i][k], ctx_q);
}
}
}
// Internal encryption function.
void encrypt_make(ciphertext_t *c, qcrt_poly_t r[DIM], qcrt_poly_t e[DIM],
qcrt_poly_t e_, fmpz_mod_poly_t m, publickey_t *pk) {
fmpz_poly_t s;
fmpz_mod_poly_t _m, t;
fmpz_t coeff, p2;
fmpz_init(coeff);
fmpz_init(p2);
fmpz_poly_init(s);
fmpz_mod_poly_init(_m, ctx_q);
for (int i = 0; i < DIM; i++) {
fmpz_mod_poly_init(c->w[i], ctx_q);
for (int j = 0; j < 2; j++) {
fmpz_mod_poly_init(c->v[i][j], ctx_q);
fmpz_mod_poly_zero(c->v[i][j], ctx_q);
}
}
fmpz_mod_poly_init(t, ctx_q);
for (int i = 0; i < DIM; i++) {
for (int j = 0; j < DIM; j++) {
for (int k = 0; k < 2; k++) {
fmpz_mod_poly_mulmod(t, pk->A[j][i][k], r[j][k], irred[k],
ctx_q);
fmpz_mod_poly_add(c->v[i][k], c->v[i][k], t, ctx_q);
}
}
}
// Lift m from Rp to Rq. */
fmpz_mod_poly_get_fmpz_poly(s, m, ctx_p);
fmpz_set_ui(p2, MODP >> 1);
for (int i = 0; i < DEGREE; i++) {
fmpz_poly_get_coeff_fmpz(coeff, s, i);
if (fmpz_cmp(coeff, p2) >= 0) {
fmpz_sub(coeff, coeff, p);
}
fmpz_mod_poly_set_coeff_fmpz(_m, i, coeff, ctx_q);
}
for (int i = 0; i < DIM; i++) {
fmpz_mod_poly_zero(c->w[i], ctx_q);
for (int j = 0; j < 2; j++) {
fmpz_mod_poly_add(c->v[i][j], c->v[i][j], e[i][j], ctx_q);
fmpz_mod_poly_scalar_mul_fmpz(c->v[i][j], c->v[i][j], p, ctx_q);
fmpz_mod_poly_mulmod(t, pk->t[j][i], r[j][i], irred[i], ctx_q);
fmpz_mod_poly_add(c->w[i], c->w[i], t, ctx_q);
}
fmpz_mod_poly_add(c->w[i], c->w[i], e_[i], ctx_q);
fmpz_mod_poly_scalar_mul_fmpz(c->w[i], c->w[i], p, ctx_q);
fmpz_mod_poly_rem(t, _m, irred[i], ctx_q);
fmpz_mod_poly_add(c->w[i], c->w[i], t, ctx_q);
}
fmpz_mod_poly_clear(_m, ctx_q);
fmpz_mod_poly_clear(t, ctx_q);
fmpz_clear(p2);
fmpz_clear(coeff);
fmpz_poly_clear(s);
}
// Encrypt a message under a public key.
void encrypt_doit(ciphertext_t *c, fmpz_mod_poly_t m, publickey_t *pk,
flint_rand_t rand) {
qcrt_poly_t r[DIM], e[DIM], e_;
for (int i = 0; i < DIM; i++) {
fmpz_mod_poly_init(e_[i], ctx_q);
for (int j = 0; j < 2; j++) {
fmpz_mod_poly_init(r[i][j], ctx_q);
fmpz_mod_poly_init(e[i][j], ctx_q);
}
encrypt_sample_short_crt(r[i], ctx_q);
encrypt_sample_short_crt(e[i], ctx_q);
}
encrypt_sample_short_crt(e_, ctx_q);
encrypt_make(c, r, e, e_, m, pk);
for (int i = 0; i < DIM; i++) {
fmpz_mod_poly_clear(e_[i], ctx_q);
for (int j = 0; j < 2; j++) {
fmpz_mod_poly_clear(r[i][j], ctx_q);
fmpz_mod_poly_clear(e[i][j], ctx_q);
}
}
}
// Decrypt ciphertext to the original plaintext message.
int encrypt_undo(fmpz_mod_poly_t m, fmpz_mod_poly_t chall, ciphertext_t *c,
privatekey_t *sk) {
fmpz_poly_t s;
fmpz_mod_poly_t t, _t, u[2];
fmpz_t coeff, q2;
int result = 1;
fmpz_init(coeff);
fmpz_init(q2);
fmpz_poly_init(s);
fmpz_mod_poly_init(t, ctx_q);
fmpz_mod_poly_init(_t, ctx_q);
for (int i = 0; i < 2; i++) {
fmpz_mod_poly_init(u[i], ctx_q);
fmpz_mod_poly_zero(u[i], ctx_q);
for (int j = 0; j < DIM; j++) {
fmpz_mod_poly_mulmod(t, c->v[j][i], sk->s1[j][i], irred[i], ctx_q);
fmpz_mod_poly_add(u[i], u[i], t, ctx_q);
}
fmpz_mod_poly_sub(u[i], c->w[i], u[i], ctx_q);
}
qcrt_poly_rec(t, u);
if (chall != NULL) {
fmpz_set_ui(q2, MODP / 2);
for (int i = 0; i < DEGREE; i++) {
fmpz_mod_poly_get_coeff_fmpz(coeff, chall, i, ctx_p);
if (fmpz_cmp(coeff, q2) >= 0) {
fmpz_sub_ui(coeff, coeff, MODP);
}
fmpz_mod_poly_set_coeff_fmpz(_t, i, coeff, ctx_q);
}
fmpz_mod_poly_mulmod(t, t, _t, large_poly, ctx_q);
}
fmpz_mod_poly_get_fmpz_poly(s, t, ctx_q);
fmpz_set_str(q2, Q2, 10);
for (int i = 0; i < DEGREE; i++) {
fmpz_poly_get_coeff_fmpz(coeff, s, i);
if (fmpz_cmp(coeff, q2) >= 0) {
fmpz_sub(coeff, coeff, q);
}
fmpz_poly_set_coeff_fmpz(s, i, coeff);
}
fmpz_mod_poly_set_fmpz_poly(m, s, ctx_p);
if (chall != NULL) {
// Check linf-norm.
fmpz_set_ui(q2, 12 * SIGMA_E);
for (int i = 0; i < DEGREE; i++) {
fmpz_mod_poly_get_coeff_fmpz(coeff, m, i, ctx_p);
if (fmpz_cmp(coeff, q2) >= 0) {
//TODO: fixme
//result = 0;
}
}
}
fmpz_clear(coeff);
fmpz_poly_clear(s);
fmpz_mod_poly_clear(t, ctx_q);
fmpz_mod_poly_clear(_t, ctx_q);
fmpz_mod_poly_clear(u[0], ctx_q);
fmpz_mod_poly_clear(u[1], ctx_q);
return result;
}
// Free ciphertext
void encrypt_free(ciphertext_t *c) {
for (int i = 0; i < DIM; i++) {
fmpz_mod_poly_clear(c->w[i], ctx_q);
for (int j = 0; j < DIM; j++) {
fmpz_mod_poly_clear(c->v[i][j], ctx_q);
}
}
}
#ifdef MAIN
// Tests and benchmarks below.
static void test(flint_rand_t rand) {
publickey_t pk;
privatekey_t sk;
ciphertext_t c;
fmpz_mod_poly_t m, _m, w[2];
fmpz_mod_poly_init(m, ctx_q);
fmpz_mod_poly_init(_m, ctx_q);
fmpz_mod_poly_init(w[0], ctx_q);
fmpz_mod_poly_init(w[1], ctx_q);
TEST_BEGIN("CRT representation is correct") {
fmpz_mod_poly_randtest(m, rand, DEGREE, ctx_q);
for (int i = 0; i < 2; i++) {
fmpz_mod_poly_rem(w[i], m, irred[i], ctx_q);
}
qcrt_poly_rec(_m, w);
TEST_ASSERT(fmpz_mod_poly_equal(m, _m, ctx_q) == 1, end);
} TEST_END;
fmpz_mod_poly_clear(m, ctx_q);
fmpz_mod_poly_clear(_m, ctx_q);
fmpz_mod_poly_init(m, ctx_p);
fmpz_mod_poly_init(_m, ctx_p);
TEST_BEGIN("encryption and decryption are consistent") {
encrypt_sample_short(m, ctx_p);
encrypt_keygen(&pk, &sk, rand);
encrypt_doit(&c, m, &pk, rand);
TEST_ASSERT(encrypt_undo(_m, NULL, &c, &sk) == 1, end);
TEST_ASSERT(fmpz_mod_poly_equal(m, _m, ctx_p) == 1, end);
} TEST_END;
end:
fmpz_mod_poly_clear(w[0], ctx_q);
fmpz_mod_poly_clear(w[1], ctx_q);
fmpz_mod_poly_clear(m, ctx_p);
fmpz_mod_poly_clear(_m, ctx_p);
encrypt_keyfree(&pk, &sk);
}
static void bench(flint_rand_t rand) {
publickey_t pk;
privatekey_t sk;
ciphertext_t c;
fmpz_mod_poly_t m, _m;
fmpz_mod_poly_init(m, ctx_p);
fmpz_mod_poly_init(_m, ctx_p);
encrypt_sample_short(m, ctx_p);
encrypt_keygen(&pk, &sk, rand);
BENCH_BEGIN("encrypt_doit") {
BENCH_ADD(encrypt_doit(&c, m, &pk, rand));
} BENCH_END;
BENCH_BEGIN("encrypt_undo") {
BENCH_ADD(encrypt_undo(_m, NULL, &c, &sk));
} BENCH_END;
fmpz_mod_poly_clear(m, ctx_p);
fmpz_mod_poly_clear(_m, ctx_p);
encrypt_keyfree(&pk, &sk);
}
int main(int argc, char *argv[]) {
flint_rand_t rand;
encrypt_setup();
flint_randinit(rand);
printf("\n** Tests for lattice-based encryption:\n\n");
test(rand);
printf("\n** Benchmarks for lattice-based encryption:\n\n");
bench(rand);
encrypt_finish();
}
#endif