-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwavelet-feature-extraction.py
134 lines (112 loc) · 4.6 KB
/
wavelet-feature-extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import scipy.misc, scipy.stats
import pywt
import math
import numpy as np
import pandas as pd
import sys, os, re, random
import multiprocessing as mp
def savefig(data, location):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.figure(figsize=(12,12))
plt.imshow(data)
plt.savefig(location)
def image_statistics(data):
flat = data.flatten()
mean = np.mean(flat)
variance = np.mean(abs(flat - mean)**2)
skewness = scipy.stats.skew(flat)
kurtosis = scipy.stats.kurtosis(flat)
return [mean, variance, skewness, kurtosis]
def extract_features(filename):
image = scipy.misc.imread(filename)
label = re.search(r'(.*)\/\((.*?)\)[\d]+\.[a-zA-Z]{3}', filename)
if label:
label = label.group(2)
else:
label = 'unknown'
w = image.shape[0]
h = image.shape[1]
if w == 512 and h == 512:
batches = [[(0, 0), (512, 512)]]
else:
pad1 = int((w - 512) / 2)
pad2 = int((h - 512) / 2)
batches = [
[(0, 0), (512, 512)], #1
[(w-512, 0), (w, 512)], #2
[(0, h-512), (512, h)], #3
[(w-512, h-512), (w, h)], #4
[(pad1, pad2), (pad1+512, pad2+512)] #5
]
metadata = []
batch_index = 0
for b in batches:
batch_index = batch_index + 1
m = [filename,label,batch_index]
for channel in range(0, 3):
sample_image = image[b[0][0]:b[1][0],b[0][1]:b[1][1],channel]
wavelet = pywt.Wavelet('db1')
# (cA, cD) = pywt.dwt(sample_image, wavelet)
# (cA, (cH, cV, cD)) = pywt.dwt2(sample_image, wavelet)
# cA = pywt.wavedec(sample_image, wavelet)
c = pywt.dwt2(sample_image, wavelet)
(cA, (cH, cV, cD)) = c
c[0][:] = 0
noise = pywt.idwt2(c, wavelet)
# scipy.misc.imsave('data/m.png', m)
# sys.exit()
m.extend(image_statistics(noise))
m.extend(image_statistics(cH))
m.extend(image_statistics(cV))
m.extend(image_statistics(cD))
metadata.append(m)
df = pd.DataFrame(metadata)
df.columns = [
'filename', 'label', 'batch',
'noise_mean_r', 'noise_variance_r', 'noise_skewness_r', 'noise_kurtosis_r',
'wavelet_h_mean_r', 'wavelet_h_variance_r', 'wavelet_h_skewness_r', 'wavelet_h_kurtosis_r',
'wavelet_v_mean_r', 'wavelet_v_variance_r', 'wavelet_v_skewness_r', 'wavelet_v_kurtosis_r',
'wavelet_d_mean_r', 'wavelet_d_variance_r', 'wavelet_d_skewness_r', 'wavelet_d_kurtosis_r',
'noise_mean_g', 'noise_variance_g', 'noise_skewness_g', 'noise_kurtosis_g',
'wavelet_h_mean_g', 'wavelet_h_variance_g', 'wavelet_h_skewness_g', 'wavelet_h_kurtosis_g',
'wavelet_v_mean_g', 'wavelet_v_variance_g', 'wavelet_v_skewness_g', 'wavelet_v_kurtosis_g',
'wavelet_d_mean_g', 'wavelet_d_variance_g', 'wavelet_d_skewness_g', 'wavelet_d_kurtosis_g',
'noise_mean_b', 'noise_variance_b', 'noise_skewness_b', 'noise_kurtosis_b',
'wavelet_h_mean_b', 'wavelet_h_variance_b', 'wavelet_h_skewness_b', 'wavelet_h_kurtosis_b',
'wavelet_v_mean_b', 'wavelet_v_variance_b', 'wavelet_v_skewness_b', 'wavelet_v_kurtosis_b',
'wavelet_d_mean_b', 'wavelet_d_variance_b', 'wavelet_d_skewness_b', 'wavelet_d_kurtosis_b',
]
return df
def train(pool_size=3):
train_dir = 'data/train/'
results = []
for d in os.listdir(train_dir):
folder = os.path.join(train_dir, d)
# single test
# f = os.listdir(folder)[0]
# df = extract_features(os.path.join(folder, f))
# print(df)
# sys.exit()
# paralel test
pool = mp.Pool(pool_size)
metadata = pool.map(extract_features, [os.path.join(folder, f) for f in os.listdir(folder)])
results.extend(metadata)
df = pd.concat(results, ignore_index=True)
df.to_csv('data/train-wavelet-features.csv', index=False)
def test(pool_size=3):
folder = 'data/test/'
# single test
# f = os.listdir(folder)[0]
# df = extract_features(os.path.join(folder, f))
# print(df)
# sys.exit()
# paralel test
pool = mp.Pool(pool_size)
metadata = pool.map(extract_features, [os.path.join(folder, f) for f in os.listdir(folder)])
results.extend(metadata)
df = pd.concat(results, ignore_index=True)
df.to_csv('data/test-wavelet-features.csv', index=False)
if __name__ == '__main__':
test(3)