-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
117 lines (93 loc) · 3.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import pickle
import sys
from time import time
import torch
import torch.nn as nn
import data.cifar10.dataloader as CIFAR10
import data.rotated_mnist.dataloader as RMNIST
from data.cifar10.dataloader import CIFARDataset
from data.rotated_mnist.dataloader import RMNISTDataset
from models.gconv import GConv2d
from models.p4allcnn import P4AllCNN
from models.p4cnn import P4CNN
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="p4cnn")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
# get learning rate
def get_lr(opt):
for param_group in opt.param_groups:
return param_group["lr"]
def train(
data, test_data, model_type="p4cnn", num_epochs=100, batch_size=1, device=device
):
if model_type == "p4allcnn":
model = P4AllCNN(3, device=device).to(device)
else:
model = P4CNN(3, device=device).to(device)
# opt = torch.optim.Adam(model.parameters(), lr=1e-3).
opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-3)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
opt, mode="min", factor=0.5, patience=5, verbose=1
)
for epoch in range(num_epochs):
current_lr = get_lr(opt)
print("Epoch {}/{}, current lr={}".format(epoch, num_epochs - 1, current_lr))
# ----------------Training---------------
model.train()
for idx, (img, label) in enumerate(data):
step_time = time()
img = img.to(device)
label = label.to(device)
y = model(img)
loss = nn.CrossEntropyLoss()(y, label)
opt.zero_grad()
loss.backward()
opt.step()
pred = torch.argmax(y, dim=1)
accuracy = torch.sum((pred == label).float()).item()
# running_metric += accuracy
print(
"Epoch {}/{} - Step: [{}/{}] time: {:.3f}s, Batch loss:{:.6f}, Batch accuracy:{}/{} ".format(
epoch,
num_epochs - 1,
idx + 1,
len(data.dataset) // batch_size,
time() - step_time,
loss.item(),
int(accuracy),
batch_size,
)
)
#Evaluate every 10 epochs
if epoch % 10 == 9:
evaluate(test_data, model, device)
def evaluate(data, model, device=device):
model.eval()
total_accuracy = 0
step_time = time()
with torch.no_grad():
for idx, (img, label) in enumerate(data):
img = img.to(device)
label = label.to(device)
y = model(img)
loss = nn.CrossEntropyLoss()(y, label)
pred = torch.argmax(y, dim=1)
total_accuracy += torch.sum((pred == label).float()).item()
total_accuracy /= len(data.dataset)
print(
"Time: {:.3f}s, Batch loss:{:.6f}, Accuracy:{:3f}% ".format(
time() - step_time, loss.item(), total_accuracy * 100.0
)
)
if __name__ == "__main__":
print("Loading datasets...")
if args.model == "p4allcnn":
trainloader, testloader = CIFAR10.get_datasets(batch_size=4)
print("Beginning training on rotated CIFAR10...")
train(trainloader, testloader, model_type=args.model, batch_size=4)
elif args.model == "p4cnn":
trainloader, testloader = RMNIST.get_datasets(batch_size=16)
print("Beginning training on rotated MNIST...")
train(trainloader, testloader, model_type=args.model, batch_size=16)