-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcmc_Analysis.Rmd
345 lines (236 loc) · 8.27 KB
/
mcmc_Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
---
title: "SCR_MCMC_Analysis"
author: "Haydt"
date: "9/26/2019"
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r libraries, echo = FALSE}
library(ggplot2)
library(tidybayes)
library(bayesplot)
library(coda)
library(rjags)
library(RColorBrewer)
library(cowplot)
library(MCMCvis)
library(rstan)
#library(Hmsc)
```
```{r load rds}
# test_mcmc <- readRDS(file = "Results/JAGS/all_site_reg_test.rds")
jagsfit <- readRDS("Results/JAGS/all_sites_reg_2020-05-01.rds")
samples <- jagsfit$samples
```
```{r trace plots}
# each mcmc file includes a list of 4 objects - from each of 4 chains
# effective sampling size and gelman diagnostic (chain convergence; PSRF)
# add in parameters from final model
par(mar=c(1,1,1,1))
color_scheme_set("viridis")
p <- mcmc_trace(samples, regex_pars = c("mu"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("alpha1"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("alpha2"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("sigma"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("beta"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("sd"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("density"))
p + facet_text(size = 15)
p <- mcmc_trace(samples, regex_pars = c("density_ha"))
p + facet_text(size = 15)
# Detection intercept
p <- mcmc_trace(samples, regex_pars = c("alpha0"))
p + facet_text(size = 15)
# p <- mcmc_trace(samples, regex_pars = c("alpha3"))
# p + facet_text(size = 15)
# p <- mcmc_trace(samples, regex_pars = c("N"))
# p + facet_text(size = 15)
# p <- mcmc_trace(samples, regex_pars = c("p_cap"))
# p + facet_text(size = 15)
```
```{r gelman}
# Want gelman diagnostic to become very close to 1 (less than 1.05)
# coda::gelman.plot(samples)
# Can see vars converge well, except sigma and sd of a0
```
```{r rhat}
##
sample_array <- as.array(samples)
sample_array <- aperm(sample_array, c(1, 3, 2))
mon <- rstan::monitor(sample_array, warmup = 0) # prints by default
# rstan:::print.simsummary(mon)
max(mon$Rhat)
min(mon$Bulk_ESS)
min(mon$Tail_ESS)
# summary(mon$Bulk_ESS)
# summary(mon$Tail_ESS)
```
```{r effective sample sizes, eval = FALSE}
# Ventari et al. 2020 have improved methods of calculating ESS and R-hat - improvement on what's used in coda. It's implemented in rstan and it's what I added above.
# https://arxiv.org/abs/1903.08008
# ratios_samples <- neff_ratio(samples) ## must be stanfil or stanreg object
ess <- effectiveSize(samples) # from package coda
print(ess)
hist(ess, breaks = 50)
ess_test <- effectiveSize(test_mcmc)
print(ess_test)
hist(ess_test, breaks = 50)
ratio <- ess/(2500*4) # how to find the number of samples? Each chain 2500 (samples) X 79 (params)?
# Need to multiply by chains?
test_ratio <- ess_test/(1000*4)
mcmc_neff(ratio, size = 2)
mcmc_neff(test_ratio, size = 2)
# y axis are the various estimated parameters
```
```{r density plots}
#create various graphical displays comparing the observed data y to the replications.
#can you do this with density?
p <- mcmc_hist(samples, regex_pars = c("density"))
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("mu"))
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("alpha1"))
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("alpha2"))
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("sigma"))
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("beta")) #!!!!!
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("sd")) #??
p + facet_text(size = 15)
p <- mcmc_hist(samples, regex_pars = c("alpha0"))
p + facet_text(size = 15)
# p <- mcmc_hist(samples, regex_pars = c("alpha3"))
# p + facet_text(size = 15)
# p <- mcmc_hist(samples, regex_pars = c("N"))
# p + facet_text(size = 15)
# p <- mcmc_hist(samples, regex_pars = c("p-cap"))
# p + facet_text(size = 15)
```
```{r density by chains}
color_scheme_set("viridis")
p <- mcmc_dens_overlay(samples, regex_pars = c("density"))
p + facet_text(size = 15)
# p <- mcmc_dens(samples, regex_pars = c("density"))
# p + facet_text(size = 15)
p <- mcmc_dens_overlay(samples, regex_pars = c("mu"))
p + facet_text(size = 15)
p <- mcmc_dens_overlay(samples, regex_pars = c("alpha1"))
p + facet_text(size = 15)
p <- mcmc_dens_overlay(samples, regex_pars = c("alpha2"))
p + facet_text(size = 15)
p <- mcmc_dens_overlay(samples, regex_pars = c("sigma"))
p + facet_text(size = 15)
p <- mcmc_dens_overlay(samples, regex_pars = c("beta"))
p + facet_text(size = 15)
p <- mcmc_dens_overlay(samples, regex_pars = c("sd"))
p + facet_text(size = 15)
# Detection intercept
p <- mcmc_dens_overlay(samples, regex_pars = c("alpha0"))
p + facet_text(size = 15)
# p <- mcmc_dens_overlay(samples, regex_pars = c("alpha3"))
# p + facet_text(size = 15)
# p <- mcmc_dens_overlay(samples, regex_pars = c("N"))
# p + facet_text(size = 15)
# p <- mcmc_dens_overlay(samples, regex_pars = c("p_cap"))
# p + facet_text(size = 15)
```
```{r violin}
color_scheme_set("teal")
p <- mcmc_violin(samples, regex_pars = c("density_ha"), probs = c(0.1, 0.5, 0.9))
p + facet_text(size = 15)
```
```{r geom eye}
# tidybayes
# p <- geom_eye(samples, regex_pars = c("density"))
# p + facet_text(size = 15)
```
```{r scatters}
# color_scheme_set("gray")
# mcmc_scatter(samples, pars = c("beta1", "density"),
# size = 1.5, alpha = 0.5)
```
```{r colors}
color_scheme_set("viridisC") ##
p1 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("viridisD") ##
p2 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("mix-purple-yellow")
p3 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("mix-red-teal")
p4 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-Accent")
p5 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-Spectral")
p6 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-Dark2")
p7 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-Paired")
p8 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-Set1")
p9 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-Set2")
p10 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-PRGn")
p11 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
color_scheme_set("brewer-BrBG")
p12 <- mcmc_dens_overlay(samples, pars = c("density[1]"))
plot_grid(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,
ncol = 4, nrow = 3)
```
```{r check posterior against inits}
```
```{r pairs}
# > p <- mcmc_pairs(samples, pars = c("density[1]", "density[2]", "density[3]", "density[4]", "density[5]", "density[6]", "beta1", "beta2"))
# > p
# Error in UseMethod("depth") :
# no applicable method for 'depth' applied to an object of class "NULL"
p <- mcmc_parcoord(samples, pars = c("density_ha[1]", "beta1"))
p
# what is this showing?
```
```{r scatters}
p <- mcmc_scatter(samples, pars = c())
p
```
```{r mean and CIs for important parameters}
## viewing median, 0.5, and 0.9 CIs here, can change to see mean instead
mcmc_intervals(samples, regex_pars = c("density_ha"), )
mcmc_areas(samples, regex_pars = c("density_ha"), area_method = "scaled height")
mcmc_areas_ridges(samples, regex_pars = c("density_ha"))
#mcmc_intervals_data(samples, regex_pars = c("density"))
#### REALLY COOL LOOKING GRAPHS!!!!
# other paramaters
```
```{r MCMCvis package}
#### HOLY CRAP THIS IS GREAT!!!!
MCMC2000_summary <- MCMCsummary(samples, round = 2) # not sure what they use for rhat or ess in this but prob better to use mon from above for those. The credible intervals should be fine though.
MCMC2000_density <- MCMCsummary(samples, round = 2,
params = 'density')
MCMCsummary(samples, round = 2,
params = c('alpha0', 'mu_a0', 'sd_a0'))
MCMCsummary(samples, round = 2,
params = c('alpha1', 'mu_a1'))
MCMCsummary(samples, round = 2,
params = c('alpha2', 'beta1', 'beta2'))
MCMC2000_sigma <- MCMCsummary(samples, round = 2,
params = 'sigma')
# add in other params!!
```
```{r}
# plot
#alpha0 per site
#alpha1 per site and sex
#density per site
#sigma per site and sex
# other params added for summary stats
```