forked from FabioMurgese/computational-neuroscience
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathG_class_1_excitable.m
54 lines (45 loc) · 1.14 KB
/
G_class_1_excitable.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
%%%%%%%%%%%%%%%%%%%% (G) Class 1 Excitable %%%%%%%%%%%%%%%%%%%%
% Class 1 excitable neurons can encode the strength of the input into their
% firing rate.
clear variables;
a=0.02; b=-0.1; c=-55; d=6;
j=0.04; k=4.1; l=108;
r=false;
u=-60; % threshold value of the model neuron
w=b*u;
udot=[];
wdot=[];
grad_u=[];
grad_w=[];
tau = 0.25;
tspan = 0:tau:300;
T1=30;
for t=tspan
if (t>T1)
I=(0.075*(t-T1));
else
I=0;
end
[u, w, du, dw, ud, wd] = izhikevich(a, b, c, d, j, k, l, u, w, I, tau, r);
udot(end+1)=ud;
wdot(end+1)=wd;
grad_u(end+1)=du;
grad_w(end+1)=dw;
end
% plot membrane potential
fig = figure;
plot(tspan,udot,[0 T1 max(tspan) max(tspan)],-90+[0 0 20 0]);
axis([0 max(tspan) -90 30])
xlabel('time')
ylabel('membrane potential')
title('(G) class 1 excitable');
print(fig,'img/G_class_1_excitable_membrane_potential.png','-dpng')
% plot phase portrait
fig = figure;
hold on;
plot(udot,wdot)
quiver(udot,wdot,grad_u,grad_w,'r')
xlabel('membrane potential')
ylabel('recovery variable')
title('(G) class 1 excitable phase portrait');
print(fig,'img/G_class_1_excitable_phase_portrait.png','-dpng')