forked from FabioMurgese/computational-neuroscience
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathH_class_2_excitable.m
55 lines (46 loc) · 1.21 KB
/
H_class_2_excitable.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
%%%%%%%%%%%%%%%%%%%% (H) Class 2 Excitable %%%%%%%%%%%%%%%%%%%%
% Some neurons cannot fire low-frequency spike trains, so they are either
% quiescent or fire a train of spikes with a certain relatively large
% frequency.
clear variables;
a=0.2; b=0.26; c=-65; d=0;
j=0.04; k=5; l=140;
r=false;
u=-64; % threshold value of the model neuron
w=b*u;
udot=[];
wdot=[];
grad_u=[];
grad_w=[];
tau = 0.25;
tspan = 0:tau:300;
T1=30;
for t=tspan
if (t>T1)
I=-0.5+(0.015*(t-T1));
else
I=-0.5;
end
[u, w, du, dw, ud, wd] = izhikevich(a, b, c, d, j, k, l, u, w, I, tau, r);
udot(end+1)=ud;
wdot(end+1)=wd;
grad_u(end+1)=du;
grad_w(end+1)=dw;
end
% plot membrane potential
fig = figure;
plot(tspan,udot,[0 T1 max(tspan) max(tspan)],-90+[0 0 20 0]);
axis([0 max(tspan) -90 30])
xlabel('time')
ylabel('membrane potential')
title('(H) class 2 excitable');
print(fig,'img/H_class_2_excitable_membrane_potential.png','-dpng')
% plot phase portrait
fig = figure;
hold on;
plot(udot,wdot)
quiver(udot,wdot,grad_u,grad_w,'r')
xlabel('membrane potential')
ylabel('recovery variable')
title('(H) class 2 excitable phase portrait');
print(fig,'img/H_class_2_excitable_phase_portrait.png','-dpng')