forked from FabioMurgese/computational-neuroscience
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathI_spike_latency.m
55 lines (46 loc) · 1.21 KB
/
I_spike_latency.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
%%%%%%%%%%%%%%%%%%%% (I) Spike Latency %%%%%%%%%%%%%%%%%%%%
% Regular spiking cells in mammalian cortex can have latencies of tens of
% ms; such latencies provide a spike-timing mechanism to encode the
% strength of the input.
clear variables;
a=0.02; b=0.2; c=-65; d=6;
j=0.04; k=5; l=140;
r=false;
u=-70; % threshold value of the model neuron
w=b*u;
udot=[];
wdot=[];
grad_u=[];
grad_w=[];
tau = 0.2;
tspan = 0:tau:100;
T1=tspan(end)/10;
for t=tspan
if t>T1 && t < T1+3
I=7.04;
else
I=0;
end
[u, w, du, dw, ud, wd] = izhikevich(a, b, c, d, j, k, l, u, w, I, tau, r);
udot(end+1)=ud;
wdot(end+1)=wd;
grad_u(end+1)=du;
grad_w(end+1)=dw;
end
% plot membrane potential
fig = figure;
plot(tspan,udot,[0 T1 T1 T1+3 T1+3 max(tspan)],-90+[0 0 10 10 0 0]);
axis([0 max(tspan) -90 30])
xlabel('time')
ylabel('membrane potential')
title('(I) spike latency');
print(fig,'img/I_spike_latency_membrane_potential.png','-dpng')
% plot phase portrait
fig = figure;
hold on;
plot(udot,wdot)
quiver(udot,wdot,grad_u,grad_w,'r')
xlabel('membrane potential')
ylabel('recovery variable')
title('(I) spike latency phase portrait');
print(fig,'img/I_spike_latency_phase_portrait.png','-dpng')