forked from FabioMurgese/computational-neuroscience
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathR_accomodation.m
60 lines (50 loc) · 1.22 KB
/
R_accomodation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
%%%%%%%%%%%%%%%%%%%% (R) Accomodation %%%%%%%%%%%%%%%%%%%%
% Neurons are extremely sensitive to brief coincident inputs, but may not
% fire in response to a strong but slowly increasing input.
clear variables;
a=0.02; b=1; c=-55; d=4;
j=0.04; k=5; l=140;
r=true;
u=-65; % threshold value of the model neuron
w=-16;
udot=[];
wdot=[];
Idot=[];
grad_u=[];
grad_w=[];
tau = 0.5;
tspan = 0:tau:400;
for t=tspan
if (t < 200)
I=t/25;
elseif t < 300
I=0;
elseif t < 312.5
I=(t-300)/12.5*4;
else
I=0;
end
[u, w, du, dw, ud, wd] = izhikevich(a, b, c, d, j, k, l, u, w, I, tau, r);
udot(end+1)=ud;
wdot(end+1)=wd;
grad_u(end+1)=du;
grad_w(end+1)=dw;
Idot(end+1)=I;
end
% plot membrane potential
fig = figure;
plot(tspan,udot,tspan,Idot*1.5-90);
axis([0 max(tspan) -90 30])
xlabel('time')
ylabel('membrane potential')
title('(R) accomodation');
print(fig,'img/R_accomodation_membrane_potential.png','-dpng')
% plot phase portrait
fig = figure;
hold on;
plot(udot,wdot)
quiver(udot,wdot,grad_u,grad_w,'r')
xlabel('membrane potential')
ylabel('recovery variable')
title('(R) accomodation phase portrait');
print(fig,'img/R_accomodation_phase_portrait.png','-dpng')