This repository has been archived by the owner on Jan 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 530
/
Copy pathtest_attention_cell.py
391 lines (372 loc) · 18.9 KB
/
test_attention_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import numpy as np
from numpy.testing import assert_allclose
import pytest
import mxnet as mx
from mxnet.gluon import HybridBlock
from gluonnlp.attention_cell import\
multi_head_dot_attn, gen_self_attn_mask, gen_mem_attn_mask,\
MultiHeadAttentionCell,\
RelAttentionScoreCell
from gluonnlp.utils.parameter import grad_global_norm
mx.npx.set_np()
@pytest.mark.parametrize('num_heads', [1, 2, 3])
@pytest.mark.parametrize('scaled', [True, False])
@pytest.mark.parametrize('normalized', [True, False])
@pytest.mark.parametrize('hybridize', [True, False])
@pytest.mark.parametrize('rel_score_type', ['share_head', 'no_share_head', 'no'])
@pytest.mark.seed(123)
def test_multi_head_dot_attention_cell(num_heads, scaled, normalized, hybridize, rel_score_type, ctx):
with ctx:
batch_size = 5
query_length, mem_length = 16, 32
query_head_units = 8
mem_head_units = 6
query_units = query_head_units * num_heads
mem_units = mem_head_units * num_heads
seed = 100
attn_cells = dict()
for layout in ['NKT', 'NTK', 'TNK']:
for use_einsum in [False, True]:
attn_cells[(layout, use_einsum)] = MultiHeadAttentionCell(
query_units=query_units,
num_heads=num_heads,
attention_dropout=0.0,
scaled=scaled,
normalized=normalized,
layout=layout,
use_einsum=use_einsum)
if hybridize:
attn_cells[(layout, use_einsum)].hybridize()
# Generate the data
query_np = np.random.normal(0, 1, (batch_size, num_heads, query_length, query_head_units))
key_np = np.random.normal(0, 1, (batch_size, num_heads, mem_length, query_head_units))
value_np = np.random.normal(0, 1, (batch_size, num_heads, mem_length, mem_head_units))
mask_np = np.random.randint(0, 2, (batch_size, query_length, mem_length))
if rel_score_type == 'share_head':
rel_scores_np = np.random.normal(0, 1, (query_length, mem_length))
elif rel_score_type == 'no_share_head':
rel_scores_np = np.random.normal(0, 1, (num_heads, query_length, mem_length))
else:
rel_scores_np = None
out_np = None
score_np = None
attn_weights_np = None
stored_layout = None
query_grad_np = None
key_grad_np = None
value_grad_np = None
rel_scores_grad_np = None
for (layout, use_einsum), attn_cell in attn_cells.items():
mx.npx.random.seed(seed)
if rel_score_type != 'no':
rel_scores = mx.np.array(rel_scores_np, dtype=np.float32)
else:
rel_scores = None
if layout == 'NKT':
query = mx.np.array(query_np, dtype=np.float32)
key = mx.np.array(key_np, dtype=np.float32)
value = mx.np.array(value_np, dtype=np.float32)
elif layout == 'NTK':
query = mx.np.array(query_np.transpose((0, 2, 1, 3)), dtype=np.float32)
key = mx.np.array(key_np.transpose((0, 2, 1, 3)), dtype=np.float32)
value = mx.np.array(value_np.transpose((0, 2, 1, 3)), dtype=np.float32)
elif layout == 'TNK':
query = mx.np.array(query_np.transpose((2, 0, 1, 3)), dtype=np.float32)
key = mx.np.array(key_np.transpose((2, 0, 1, 3)), dtype=np.float32)
value = mx.np.array(value_np.transpose((2, 0, 1, 3)), dtype=np.float32)
else:
raise NotImplementedError
mask = mx.np.array(mask_np, dtype=np.int32)
query.attach_grad()
key.attach_grad()
value.attach_grad()
if rel_scores is not None:
rel_scores.attach_grad()
with mx.autograd.record():
out, [score, attn_weights] = attn_cell(query, key, value, mask, rel_scores)
out.backward()
if layout == 'NKT':
assert out.shape == (batch_size, query_length, num_heads * mem_head_units)
elif layout == 'NTK':
assert out.shape == (batch_size, query_length, num_heads * mem_head_units)
elif layout == 'TNK':
assert out.shape == (query_length, batch_size, num_heads * mem_head_units)
else:
raise NotImplementedError
for i in range(num_heads):
assert_allclose(attn_weights[:, i, :, :][mask == 0].asnumpy(),
mask[mask == 0].astype(np.float32).asnumpy(), 1E-5, 1E-5)
if stored_layout is None:
out_np = out.asnumpy()
score_np = score.asnumpy()
attn_weights_np = attn_weights.asnumpy()
stored_layout = layout
query_grad_np = query.grad.asnumpy()
key_grad_np = key.grad.asnumpy()
value_grad_np = value.grad.asnumpy()
if rel_score_type != 'no':
rel_scores_grad_np = rel_scores.grad.asnumpy()
else:
assert stored_layout == 'NKT'
# Begin to match the output
if layout == 'NKT':
m_out_np = out.asnumpy()
m_score_np = score.asnumpy()
m_attn_weights_np = attn_weights.asnumpy()
m_query_grad_np = query.grad.asnumpy()
m_key_grad_np = key.grad.asnumpy()
m_value_grad_np = value.grad.asnumpy()
if rel_score_type != 'no':
m_rel_scores_grad_np = rel_scores.grad.asnumpy()
elif layout == 'NTK':
m_out_np = out.asnumpy()
m_score_np = score.asnumpy()
m_attn_weights_np = attn_weights.asnumpy()
m_query_grad_np = query.grad.asnumpy().transpose((0, 2, 1, 3))
m_key_grad_np = key.grad.asnumpy().transpose((0, 2, 1, 3))
m_value_grad_np = value.grad.asnumpy().transpose((0, 2, 1, 3))
if rel_score_type != 'no':
m_rel_scores_grad_np = rel_scores.grad.asnumpy()
elif layout == 'TNK':
m_out_np = out.asnumpy().transpose((1, 0, 2))
m_score_np = score.asnumpy()
m_attn_weights_np = attn_weights.asnumpy()
m_query_grad_np = query.grad.asnumpy().transpose((1, 2, 0, 3))
m_key_grad_np = key.grad.asnumpy().transpose((1, 2, 0, 3))
m_value_grad_np = value.grad.asnumpy().transpose((1, 2, 0, 3))
if rel_score_type != 'no':
m_rel_scores_grad_np = rel_scores.grad.asnumpy()
else:
raise NotImplementedError
assert_allclose(m_out_np, out_np, 1E-5, 1E-5)
assert_allclose(m_score_np, score_np, 1E-5, 1E-5)
assert_allclose(m_attn_weights_np, attn_weights_np, 1E-5, 1E-5)
assert_allclose(m_query_grad_np, query_grad_np, 1E-5, 1E-5)
assert_allclose(m_key_grad_np, key_grad_np, 1E-5, 1E-5)
assert_allclose(m_value_grad_np, value_grad_np, 1E-5, 1E-5)
if rel_score_type != 'no':
assert_allclose(m_rel_scores_grad_np, rel_scores_grad_np, 1E-5, 1E-5)
@pytest.mark.parametrize('scaled', [True, False])
@pytest.mark.parametrize('normalized', [True, False])
@pytest.mark.seed(123)
def test_dot_product_attention(scaled, normalized, ctx):
with ctx:
num_heads = 4
batch_size = 32
query_length, mem_length = 16, 32
num_channel = 8
query = mx.np.random.normal(0, 1, (batch_size, num_heads, query_length, num_channel))
key = mx.np.random.normal(0, 1, (batch_size, num_heads, mem_length, num_channel))
value = mx.np.random.normal(0, 1, (batch_size, num_heads, mem_length, num_channel))
mask = mx.np.random.randint(0, 2, (batch_size, query_length, mem_length))
out, [score, attn_weights] = multi_head_dot_attn(query, key, value, mask,
query_head_units=num_channel,
scaled=scaled, normalized=normalized)
assert out.shape == (batch_size, query_length, num_heads * num_channel)
for i in range(num_heads):
assert_allclose(attn_weights[:, i, :, :][mask == 0].asnumpy(),
mask[mask == 0].astype(np.float32).asnumpy(), 1E-5, 1E-5)
@pytest.mark.seed(123)
def test_gen_attn_mask(ctx):
class GenSelfAttnMask(HybridBlock):
def __init__(self, dtype, layout, attn_type):
super().__init__()
self._dtype = dtype
self._layout = layout
self._attn_type = attn_type
def forward(self, data, valid_length):
return gen_self_attn_mask(data, valid_length,
dtype=self._dtype,
layout=self._layout,
attn_type=self._attn_type)
class GenMemAttnMask(HybridBlock):
def __init__(self, dtype, layout):
super().__init__()
self._dtype = dtype
self._layout = layout
def forward(self, mem, mem_valid_length, data, valid_length):
return gen_mem_attn_mask(mem, mem_valid_length, data, valid_length,
dtype=self._dtype, layout=self._layout)
with ctx:
batch_size = 4
query_length = 8
mem_length = 6
nchannel = 5
data = mx.np.random.normal(0, 1, (batch_size, query_length, nchannel), dtype=np.float32)
valid_length = mx.np.random.randint(1, query_length + 1, (batch_size,))
mem = mx.np.random.normal(0, 1, (batch_size, mem_length, nchannel), dtype=np.float32)
mem_valid_length = mx.np.random.randint(1, mem_length + 1, (batch_size,))
for hybridize in [False, True]:
# Test Full Attention Mask
mask_gen_nt = GenSelfAttnMask(dtype=np.float32, layout='NT', attn_type='full')
mask_gen_tn = GenSelfAttnMask(dtype=np.float32, layout='TN', attn_type='full')
if hybridize:
mask_gen_nt.hybridize()
mask_gen_tn.hybridize()
mask_nt = mask_gen_nt(data, valid_length)
mask_nt = mask_nt.asnumpy()
mask_tn = mask_gen_tn(mx.np.swapaxes(data, 0, 1), valid_length)
mask_tn = mask_tn.asnumpy()
mask = mask_nt
assert_allclose(mask_nt, mask_tn)
for b in range(batch_size):
v_l = valid_length.asnumpy()[b]
for i in range(v_l):
assert (mask[b, i, :v_l] == 1).all()
assert(mask[b, i, v_l:] == 0).all()
for i in range(v_l, query_length):
assert (mask[b, i, :] == 0).all()
# Test Causal Attention Mask
mask_gen_nt = GenSelfAttnMask(dtype=np.float32, layout='NT', attn_type='causal')
mask_gen_tn = GenSelfAttnMask(dtype=np.float32, layout='TN', attn_type='causal')
if hybridize:
mask_gen_nt.hybridize()
mask_gen_tn.hybridize()
mask_nt = mask_gen_nt(data, valid_length)
mask_tn = mask_gen_tn(mx.np.swapaxes(data, 0, 1), valid_length)
assert_allclose(mask_nt.asnumpy(), mask_tn.asnumpy())
mask = mask_nt.asnumpy()
for b in range(batch_size):
v_l = valid_length.asnumpy()[b]
for i in range(v_l):
assert (mask[b, i, :(i + 1)] == 1).all()
assert (mask[b, i, (i + 1):] == 0).all()
for i in range(v_l, query_length):
assert (mask[b, i, :] == 0).all()
# Test Mem Attention Mask
mask_gen_nt = GenMemAttnMask(dtype=np.float32, layout='NT')
mask_gen_tn = GenMemAttnMask(dtype=np.float32, layout='TN')
if hybridize:
mask_gen_nt.hybridize()
mask_gen_tn.hybridize()
mask_nt = mask_gen_nt(mem, mem_valid_length, data, valid_length)
mask_tn = mask_gen_tn(mx.np.swapaxes(mem, 0, 1), mem_valid_length,
mx.np.swapaxes(data, 0, 1), valid_length)
mask = mask_nt.asnumpy()
assert_allclose(mask_nt.asnumpy(), mask_tn.asnumpy())
for b in range(batch_size):
data_v_l = valid_length.asnumpy()[b]
mem_v_l = mem_valid_length.asnumpy()[b]
for i in range(data_v_l):
assert (mask[b, i, :mem_v_l] == 1).all()
assert (mask[b, i, mem_v_l:] == 0).all()
for i in range(data_v_l, query_length):
assert (mask[b, i, :] == 0).all()
@pytest.mark.parametrize('num_heads', [1, 2, 3])
@pytest.mark.parametrize('method', ['transformer_xl', 'shaw', 't5'])
@pytest.mark.parametrize('bidirectional', [False, True])
@pytest.mark.parametrize('hybridize', [False, True])
@pytest.mark.seed(123)
def test_multi_head_rel_attn_score(num_heads, method, bidirectional, hybridize, ctx):
batch_size = 6
query_length = 25
mem_length = 20
query_head_units = 7
# Initialize the attention cell with relative positional embedding
base_layout = 'NKT'
base_use_einsum = False
if method == 'shaw':
num_buckets = None
max_distance = 20
elif method == 't5':
num_buckets = 10
max_distance = 20
elif method == 'transformer_xl':
num_buckets = None
max_distance = None
else:
raise NotImplementedError
base_score_cell = RelAttentionScoreCell(query_units=num_heads * query_head_units,
num_heads=num_heads,
dropout=0.0,
method=method,
num_buckets=num_buckets,
max_distance=max_distance,
layout=base_layout,
use_einsum=base_use_einsum)
base_score_cell.initialize()
if hybridize:
base_score_cell.hybridize()
# Generate the data
query = mx.np.random.normal(0, 1,
(batch_size, num_heads, query_length, query_head_units),
dtype=np.float32)
if method != 't5':
rel_score_grad = mx.np.random.normal(0, 1, (batch_size, num_heads, query_length, mem_length),
dtype=np.float32)
else:
rel_score_grad = mx.np.random.normal(0, 1,
(num_heads, query_length, mem_length),
dtype=np.float32)
query_positions = mx.np.arange(query_length, dtype=np.int32)
mem_positions = mx.np.arange(mem_length, dtype=np.int32)
rel_positions = mx.np.expand_dims(query_positions, axis=-1)\
- mx.np.expand_dims(mem_positions, axis=0)
mask = mx.np.random.randint(0, 2, (batch_size, query_length, mem_length), dtype=np.int32)
query.attach_grad()
with mx.autograd.record():
rel_score = base_score_cell(rel_positions, query)
rel_score.backward(rel_score_grad)
original_rel_score = rel_score.asnumpy()
original_grad_norm = grad_global_norm(base_score_cell.collect_params().values())
original_query_grad_norm = np.linalg.norm(query.grad.asnumpy())
assert original_grad_norm > 0
# 1. Test for permutation equivariant
# We can permutate the query, rel_positions and the rel_score_grad and the result should
# always be the same.
query_perm = mx.np.array(np.random.permutation(query_length), dtype=np.int32)
mem_perm = mx.np.array(np.random.permutation(mem_length, ), dtype=np.int32)
query.grad[:] = 0
with mx.autograd.record():
rel_score = base_score_cell(rel_positions[query_perm, :][:, mem_perm],
query[:, :, query_perm, :])
if method != 't5':
rel_score.backward(rel_score_grad[:, :, query_perm, :][:, :, :, mem_perm])
else:
rel_score.backward(rel_score_grad[:, query_perm, :][:, :, mem_perm])
permutated_out = rel_score.asnumpy()
permutated_grad_norm = grad_global_norm(base_score_cell.collect_params().values())
permutated_query_grad_norm = np.linalg.norm(query.grad.asnumpy())
if method != 't5':
assert_allclose(
original_rel_score[:, :, query_perm.asnumpy(), :][:, :, :, mem_perm.asnumpy()],
permutated_out, 1E-4, 1E-4)
else:
assert_allclose(original_rel_score[:, query_perm.asnumpy(), :][:, :, mem_perm.asnumpy()],
permutated_out, 1E-4, 1E-4)
assert_allclose(permutated_grad_norm, original_grad_norm, 1E-4, 1E-4)
assert_allclose(permutated_query_grad_norm, original_query_grad_norm, 1E-4, 1E-4)
# 2. Test for different layout + use/not use einsum
for layout in ['NKT', 'NTK', 'TNK']:
for use_einsum in [False, True]:
if layout == base_layout and use_einsum == base_use_einsum:
continue
score_cell = RelAttentionScoreCell(query_units=num_heads * query_head_units,
num_heads=num_heads,
dropout=0.0,
method=method,
num_buckets=num_buckets,
max_distance=max_distance,
layout=layout,
use_einsum=use_einsum)
score_cell.initialize()
if hybridize:
score_cell.hybridize()
score_cell.load_dict({name: param.data() for name, param in base_score_cell.collect_params().items()})
query.attach_grad()
query.grad[:] = 0
with mx.autograd.record():
if layout == 'NKT':
rel_score = score_cell(rel_positions, query)
rel_score.backward(rel_score_grad)
elif layout == 'NTK':
rel_score = score_cell(rel_positions, query.transpose((0, 2, 1, 3)))
rel_score.backward(rel_score_grad)
elif layout == 'TNK':
rel_score = score_cell(rel_positions, query.transpose((2, 0, 1, 3)))
rel_score.backward(rel_score_grad)
else:
raise NotImplementedError
assert_allclose(rel_score.asnumpy(), original_rel_score, 1E-5, 1E-5)
layout_query_grad_norm = np.linalg.norm(query.grad.asnumpy())
assert_allclose(layout_query_grad_norm, original_query_grad_norm, 1E-5, 1E-5)