Skip to content

Latest commit

 

History

History
45 lines (22 loc) · 5.28 KB

Алгоритмическая сложность.md

File metadata and controls

45 lines (22 loc) · 5.28 KB

Алгоритмическая сложность

Описание

Сложность алгоритмов обычно оценивают по времени выполнения или по используемой памяти. В обоих случаях сложность зависит от размеров входных данных: массив из 100 элементов будет обработан быстрее, чем аналогичный из 1000. При этом точное время мало кого интересует: оно зависит от процессора, типа данных, языка программирования и множества других параметров. Важна лишь асимптотическая сложность, т. е. сложность при стремлении размера входных данных к бесконечности.

Допустим, некоторому алгоритму нужно выполнить 4n^3 + 7n условных операций, чтобы обработать n элементов входных данных. При увеличении n на итоговое время работы будет значительно больше влиять возведение n в куб, чем умножение его на 4 или же прибавление 7n. Тогда говорят, что временная сложность этого алгоритма равна О(n^3), т. е. зависит от размера входных данных кубически.

Использование заглавной буквы О (или так называемая О-нотация) пришло из математики, где е е применяют для сравнения асимптотического поведения функций. Формально O(f(n)) означает, что время работы алгоритма (или объ ем занимаемой памяти) раст ет в зависимости от объ ема входных данных не быстрее, чем некоторая константа, умноженная на f(n).

Примеры

O(1) — константная сложность

Случается, что время работы алгоритма вообще не зависит от размера входных данных. Тогда сложность обозначают как O(1). Например, для определения значения третьего элемента массива не нужно ни запоминать элементы, ни проходить по ним сколько-то раз. Всегда нужно просто дождаться в потоке входных данных третий элемент и это будет результатом, на вычисление которого для любого количества данных нужно одно и то же время.

O(n) — линейная сложность

Такой сложностью обладает, например, алгоритм поиска наибольшего элемента в не отсортированном массиве. Нам прид ется пройтись по всем n элементам массива, чтобы понять, какой из них максимальный.

O(log n) — логарифмическая сложность

Простейший пример — бинарный поиск. Если массив отсортирован, мы можем проверить, есть ли в н ем какое-то конкретное значение, методом деления пополам. Проверим средний элемент, если он больше искомого, то отбросим вторую половину массива — там его точно нет. Если же меньше, то наоборот — отбросим начальную половину. И так будем продолжать делить пополам, в итоге проверим log n элементов.

O(n^2) — квадратичная сложность

Такую сложность имеет, например, алгоритм сортировки вставками. В канонической реализации он представляет из себя два вложенных цикла: один, чтобы проходить по всему массиву, а второй, чтобы находить место очередному элементу в уже отсортированной части. Таким образом, количество операций будет зависеть от размера массива как n * n, т. е. n2.

Complexity Chart

Complexity Table

Big-O Cheat Sheet

Полезные ссылки