This repository has been archived by the owner on Nov 17, 2021. It is now read-only.
forked from StanfordBioinformatics/Scoring
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconf.py
70 lines (62 loc) · 2.84 KB
/
conf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import ConfigParser
import os
DEFAULT_GLOBALS = os.path.join(os.path.split(os.path.abspath(__file__))[0], 'globals.conf') #default globals is located in script directory
if os.path.exists('globals.conf'):
globals_file = 'globals.conf'
print "Using local globals.conf file"
else:
globals_file = DEFAULT_GLOBALS
cp = ConfigParser.ConfigParser()
cp.read(globals_file)
BIN_DIR = cp.get('globals', 'BIN_DIR')
SUBMISSION_BIN_DIR = cp.get('globals', 'SUBMISSION_BIN_DIR')
R_BINARY = cp.get('globals', 'R_BINARY')
SPP_BINARY = cp.get('globals', 'SPP_BINARY')
SPP_BINARY_NO_DUPS = cp.get('globals', 'SPP_BINARY_NO_DUPS')
MACS_BINARY = cp.get('globals', 'MACS_BINARY')
MACS_LIBRARY = cp.get('globals', 'MACS_LIBRARY')
MACS2_BINARY = cp.get('globals', 'MACS2_BINARY')
MACS2_LIBRARY = cp.get('globals', 'MACS2_LIBRARY')
PEAKSEQ_BINARY = cp.get('globals', 'PEAKSEQ_BINARY')
PEAKSEQ_BIN_SIZE = cp.getint('globals', 'PEAKSEQ_BIN_SIZE')
ARCHIVE_DIR = cp.get('globals', 'ARCHIVE_DIR')
DOWNLOAD_BASE = cp.get('globals', 'DOWNLOAD_BASE')
SJM_NOTIFY = eval(cp.get('globals', 'SJM_NOTIFY'))
QUEUE = cp.get('globals', 'QUEUE')
SGE_PROJECT = cp.get('globals', 'SGE_PROJECT')
MYSQL_PASSWORD_FILE = cp.get('globals', 'MYSQL_PASSWORD_FILE')
CONTROL_DB_HOST = cp.get('globals', 'CONTROL_DB_HOST')
CONTROL_DB_USER = cp.get('globals', 'CONTROL_DB_USER')
CONTROL_DB = cp.get('globals', 'CONTROL_DB')
CONTROL_DB_PORT = int(cp.get('globals', 'CONTROL_DB_PORT'))
GLOBAL_TMP_DIR = cp.get('globals', 'TMP_DIR')
SAMTOOLS_BINARY = cp.get('globals', 'SAMTOOLS_BINARY')
class ConfigSample:
def __init__(self, config_file):
if not os.path.isfile(config_file):
raise Exception("Cannot find file %s" % config_file)
cp = ConfigParser.ConfigParser()
cp.read(config_file)
self.path = os.path.abspath(config_file)
self.RESULTS_DIR = cp.get('general', 'results_dir')
self.TEMP_DIR = cp.get('general', 'temporary_dir')
self.RUN_NAME = cp.get('general', 'run_name')
self.Q_VALUE_THRESHOLDS = map(float, cp.get('general', 'q_value_thresholds').split(','))
self.GENOME = cp.get('general', 'genome')
self.REPLICATES = []
replicate_sections = filter(lambda x: x.startswith('replicate'), cp.sections())
replicate_sections.sort(key=lambda x: int(x[9:])) # sort by replicate number e.g. replicate5
for s in replicate_sections:
self.REPLICATES.append(cp.get(s, 'mapped_reads').split(','))
class ConfigControl:
def __init__(self, config_file):
if not os.path.isfile(config_file):
raise Exception("Cannot find file %s" % config_file)
cp = ConfigParser.ConfigParser()
cp.read(config_file)
self.path = os.path.abspath(config_file)
self.CONTROL_MAPPED_READS = cp.get('peakseq', 'control_mapped_reads').split(',')
self.RESULTS_DIR = cp.get('peakseq', 'results_dir')
self.TEMP_DIR = cp.get('peakseq', 'temporary_dir')
self.RUN_NAME = cp.get('peakseq', 'run_name')
self.GENOME = cp.get('peakseq', 'genome')