-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCellularAutomataHelpers.hpp
507 lines (441 loc) · 13.8 KB
/
CellularAutomataHelpers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
#ifndef _CellularAutomataHelpers_H_
#define _CellularAutomataHelpers_H_
namespace CellularAutomata
{
//helper class to get neighbors with periodic boundary conditions
class Lattice
{
size_t dims[3];
size_t yDim;
size_t zDim;
size_t sliceSize;
size_t numCells;
//function to get directional neighbors with periodic boundary conditions
inline size_t next(size_t i, size_t direction)
{
i++;
if(dims[direction] == i)
return 0;
return i;
}
inline size_t prev(size_t i, size_t direction)
{
if(0 == i)
i = dims[direction];
i--;
return i;
}
public:
Lattice(size_t x, size_t y, size_t z)
{
dims[0] = x;
dims[1] = y;
dims[2] = z;
sliceSize = x * y;
numCells = sliceSize * z;
}
size_t size()
{
return dims[0] * dims[1] * dims[2];
}
//given an (x,y,z) tuple compute the index
inline size_t ToIndex(size_t x, size_t y, size_t z)
{
return z * sliceSize + y * dims[0] + x;
}
//given an index compute the (x,y,z) tuple
inline void ToTuple(size_t index, size_t& x, size_t& y, size_t& z)
{
z = index / sliceSize;
index -= z * sliceSize;
y = index / dims[0];
x = index - y * dims[0];
}
//given an (x, y, z) tuple and neighbor offset, compute the corresponding neighbor index (with periodic boundary conditions)
inline size_t operator() (int x, int y, int z, int dx, int dy, int dz)
{
//get neighbor indicies
int neighborX = x + dx;
int neighborY = y + dy;
int neighborZ = z + dz;
//apply periodic boundary conditions
while(neighborX < 0)
neighborX += dims[0];
while(neighborX >= dims[0])
neighborX -= dims[0];
while(neighborY < 0)
neighborY += dims[0];
while(neighborY >= dims[0])
neighborY -= dims[0];
while(neighborZ < 0)
neighborZ += dims[0];
while(neighborZ >= dims[0])
neighborZ -= dims[0];
//convert to index + return
return this->ToIndex(neighborX, neighborY, neighborZ);
}
//given an index and offset, compute the corresponding neighbor index (with periodic boundary conditions)
inline size_t operator() (size_t index, int dx, int dy, int dz)
{
//convert index to tuple
size_t x, y, z;
this->ToTuple(index, x, y, z);
//return neighbor index
return (x, y, z, dx, dy, dz);
}
/*
* Functions to get the neighhors of a pixel
*/
//6/face connected
std::vector<size_t> VonNeumann(size_t x, size_t y, size_t z)
{
//get neighbor indicies
size_t xPrev = prev(x, 0);
size_t xNext = next(x, 0);
size_t yPrev = prev(y, 1);
size_t yNext = next(y, 1);
size_t zPrev = prev(z, 2);
size_t zNext = next(z, 2);
//compute neigbors
std::vector<size_t> neighbors(6, 0);
neighbors[0] = ToIndex(xPrev, y, z);
neighbors[1] = ToIndex(xNext, y, z);
neighbors[2] = ToIndex(x, yPrev, z);
neighbors[3] = ToIndex(x, yNext, z);
neighbors[4] = ToIndex(x, y, zPrev);
neighbors[5] = ToIndex(x, y, zNext);
return neighbors;
}
std::vector<size_t> VonNeumann(size_t index)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return VonNeumann(x, y, z);
}
//18/face+edge connected
std::vector<size_t> EighteenCell(size_t x, size_t y, size_t z)
{
//get neighbor indicies
size_t xPrev = prev(x, 0);
size_t xNext = next(x, 0);
size_t yPrev = prev(y, 1);
size_t yNext = next(y, 1);
size_t zPrev = prev(z, 2);
size_t zNext = next(z, 2);
//compute neigbors
std::vector<size_t> neighbors(18, 0);
//faces
neighbors[0] = ToIndex(xPrev, y, z);
neighbors[1] = ToIndex(xNext, y, z);
neighbors[2] = ToIndex(x, yPrev, z);
neighbors[3] = ToIndex(x, yNext, z);
neighbors[4] = ToIndex(x, y, zPrev);
neighbors[5] = ToIndex(x, y, zNext);
//edges
neighbors[6] = ToIndex(x, yPrev, zPrev);
neighbors[7] = ToIndex(x, yPrev, zNext);
neighbors[8] = ToIndex(x, yNext, zPrev);
neighbors[9] = ToIndex(x, yNext, zNext);
neighbors[10] = ToIndex(xPrev, y, zPrev);
neighbors[11] = ToIndex(xPrev, y, zNext);
neighbors[12] = ToIndex(xNext, y, zPrev);
neighbors[13] = ToIndex(xNext, y, zNext);
neighbors[14] = ToIndex(xPrev, yPrev, z);
neighbors[15] = ToIndex(xPrev, yNext, z);
neighbors[16] = ToIndex(xNext, yPrev, z);
neighbors[17] = ToIndex(xNext, yNext, z);
return neighbors;
}
std::vector<size_t> EighteenCell(size_t index)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return EighteenCell(x, y, z);
}
//26/face+edge+corner connected
std::vector<size_t> Moore(size_t x, size_t y, size_t z)
{
//get neighbor indicies
size_t xPrev = prev(x, 0);
size_t xNext = next(x, 0);
size_t yPrev = prev(y, 1);
size_t yNext = next(y, 1);
size_t zPrev = prev(z, 2);
size_t zNext = next(z, 2);
//compute neigbors
std::vector<size_t> neighbors(26, 0);
//faces
neighbors[0] = ToIndex(xPrev, y, z);
neighbors[1] = ToIndex(xNext, y, z);
neighbors[2] = ToIndex(x, yPrev, z);
neighbors[3] = ToIndex(x, yNext, z);
neighbors[4] = ToIndex(x, y, zPrev);
neighbors[5] = ToIndex(x, y, zNext);
//edges
neighbors[6] = ToIndex(x, yPrev, zPrev);
neighbors[7] = ToIndex(x, yPrev, zNext);
neighbors[8] = ToIndex(x, yNext, zPrev);
neighbors[9] = ToIndex(x, yNext, zNext);
neighbors[10] = ToIndex(xPrev, y, zPrev);
neighbors[11] = ToIndex(xPrev, y, zNext);
neighbors[12] = ToIndex(xNext, y, zPrev);
neighbors[13] = ToIndex(xNext, y, zNext);
neighbors[14] = ToIndex(xPrev, yPrev, z);
neighbors[15] = ToIndex(xPrev, yNext, z);
neighbors[16] = ToIndex(xNext, yPrev, z);
neighbors[17] = ToIndex(xNext, yNext, z);
//corners
neighbors[18] = ToIndex(xPrev, yPrev, zPrev);
neighbors[19] = ToIndex(xPrev, yPrev, zNext);
neighbors[20] = ToIndex(xPrev, yNext, zPrev);
neighbors[21] = ToIndex(xPrev, yNext, zNext);
neighbors[22] = ToIndex(xNext, yPrev, zPrev);
neighbors[23] = ToIndex(xNext, yPrev, zNext);
neighbors[24] = ToIndex(xNext, yNext, zPrev);
neighbors[25] = ToIndex(xNext, yNext, zNext);
return neighbors;
}
std::vector<size_t> Moore(size_t index)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return Moore(x, y, z);
}
//2 shells of 26 connectivity (26 connected neighborhood of all 26 connected neighbors)
std::vector<size_t> ExtendedMoore(size_t x, size_t y, size_t z)
{
//get neighbor indicies
size_t xIndicies[5];
size_t yIndicies[5];
size_t zIndicies[5];
xIndicies[1] = prev(x, 0);
xIndicies[0] = prev(xIndicies[1], 0);
xIndicies[2] = x;
xIndicies[3] = next(x, 0);
xIndicies[4] = next(xIndicies[3], 0);
yIndicies[1] = prev(y, 0);
yIndicies[0] = prev(yIndicies[1], 0);
yIndicies[2] = y;
yIndicies[3] = next(y, 0);
yIndicies[4] = next(yIndicies[3], 0);
zIndicies[1] = prev(z, 0);
zIndicies[0] = prev(zIndicies[1], 0);
zIndicies[2] = z;
zIndicies[3] = next(z, 0);
zIndicies[4] = next(zIndicies[3], 0);
//compute neigbors
std::vector<size_t> neighbors;
neighbors.reserve(124);
//get all neighbors
for(size_t i = 0; i < 5; i++)
{
for(size_t j = 0; j < 5; j++)
{
for(size_t k = 0; k < 5; k++)
{
if(i == 2 && j == 2 && k == 2)
continue;
neighbors.push_back( ToIndex(xIndicies[i], yIndicies[j], zIndicies[k]) );
}
}
}
return neighbors;
}
std::vector<size_t> ExtendedMoore(size_t index)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return ExtendedMoore(x, y, z);
}
//face connected + 2 opposing edge connected (~spherical)
//Eight cell has 6 variants in 3d (6 opposing pairs of edges)
std::vector<size_t> EightCell(size_t x, size_t y, size_t z, size_t variant)
{
//get neighbor indicies
size_t xPrev = prev(x, 0);
size_t xNext = next(x, 0);
size_t yPrev = prev(y, 1);
size_t yNext = next(y, 1);
size_t zPrev = prev(z, 2);
size_t zNext = next(z, 2);
//compute neigbors
std::vector<size_t> neighbors(8, 0);
//always has faces
neighbors[0] = ToIndex(xPrev, y, z);
neighbors[1] = ToIndex(xNext, y, z);
neighbors[2] = ToIndex(x, yPrev, z);
neighbors[3] = ToIndex(x, yNext, z);
neighbors[4] = ToIndex(x, y, zPrev);
neighbors[5] = ToIndex(x, y, zNext);
//edges
switch(variant)
{
case 0:
neighbors[6] = ToIndex(xPrev, yPrev, z);
neighbors[7] = ToIndex(xNext, yNext, z);
break;
case 1:
neighbors[6] = ToIndex(xPrev, yNext, z);
neighbors[7] = ToIndex(xNext, yPrev, z);
break;
case 2:
neighbors[6] = ToIndex(xPrev, y, zPrev);
neighbors[7] = ToIndex(xNext, y, zNext);
break;
case 3:
neighbors[6] = ToIndex(xPrev, y, zNext);
neighbors[7] = ToIndex(xNext, y, zPrev);
break;
case 4:
neighbors[6] = ToIndex(x, yPrev, zPrev);
neighbors[7] = ToIndex(x, yNext, zNext);
break;
case 5:
neighbors[6] = ToIndex(x, yPrev, zNext);
neighbors[7] = ToIndex(x, yNext, zPrev);
break;
}
return neighbors;
}
std::vector<size_t> EightCell(size_t index, size_t variant)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return EightCell(x, y, z, variant);
}
//6 connected + 2 opposing corner connected + adjacent edge connected
//Fourteen cell has 4 variants in 3d (4 opposing pairs of corners)
std::vector<size_t> FourteenCell(size_t x, size_t y, size_t z, size_t variant)
{
//get neighbor indicies
size_t xPrev = prev(x, 0);
size_t xNext = next(x, 0);
size_t yPrev = prev(y, 1);
size_t yNext = next(y, 1);
size_t zPrev = prev(z, 2);
size_t zNext = next(z, 2);
//compute neigbors
std::vector<size_t> neighbors(14, 0);
//always has faces
neighbors[0] = ToIndex(xPrev, y, z);
neighbors[1] = ToIndex(xNext, y, z);
neighbors[2] = ToIndex(x, yPrev, z);
neighbors[3] = ToIndex(x, yNext, z);
neighbors[4] = ToIndex(x, y, zPrev);
neighbors[5] = ToIndex(x, y, zNext);
//corners + adjacent edges
switch(variant)
{
case 0:
neighbors[6] = ToIndex(xPrev, yPrev, zPrev);
neighbors[7] = ToIndex(x, yPrev, zPrev);
neighbors[8] = ToIndex(xPrev, y, zPrev);
neighbors[9] = ToIndex(xPrev, yPrev, z);
neighbors[10] = ToIndex(xNext, yNext, zNext);
neighbors[11] = ToIndex(x, yNext, zNext);
neighbors[12] = ToIndex(xNext, y, zNext);
neighbors[13] = ToIndex(xNext, yNext, z);
break;
case 1:
neighbors[6] = ToIndex(xPrev, yPrev, zNext);
neighbors[7] = ToIndex(x, yPrev, zNext);
neighbors[8] = ToIndex(xPrev, y, zNext);
neighbors[9] = ToIndex(xPrev, yPrev, z);
neighbors[10] = ToIndex(xNext, yNext, zPrev);
neighbors[11] = ToIndex(x, yNext, zPrev);
neighbors[12] = ToIndex(xNext, y, zPrev);
neighbors[13] = ToIndex(xNext, yNext, z);
break;
case 2:
neighbors[6] = ToIndex(xPrev, yNext, zPrev);
neighbors[7] = ToIndex(x, yNext, zPrev);
neighbors[8] = ToIndex(xPrev, y, zPrev);
neighbors[9] = ToIndex(xPrev, yNext, z);
neighbors[10] = ToIndex(xNext, yPrev, zNext);
neighbors[11] = ToIndex(x, yPrev, zNext);
neighbors[12] = ToIndex(xNext, y, zNext);
neighbors[13] = ToIndex(xNext, yPrev, z);
break;
case 3:
neighbors[6] = ToIndex(xPrev, yNext, zNext);
neighbors[7] = ToIndex(x, yNext, zNext);
neighbors[8] = ToIndex(xPrev, y, zNext);
neighbors[9] = ToIndex(xPrev, yNext, z);
neighbors[10] = ToIndex(xNext, yPrev, zPrev);
neighbors[11] = ToIndex(x, yPrev, zPrev);
neighbors[12] = ToIndex(xNext, y, zPrev);
neighbors[13] = ToIndex(xNext, yPrev, z);
break;
}
return neighbors;
}
std::vector<size_t> FourteenCell(size_t index, size_t variant)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return FourteenCell(x, y, z, variant);
}
//face connected + edge connected + 2 opposing corner connected
//Twnety cell has 4 variants in 3d (4 opposing pairs of corners)
std::vector<size_t> TwentyCell(size_t x, size_t y, size_t z, size_t variant)
{
//get neighbor indicies
size_t xPrev = prev(x, 0);
size_t xNext = next(x, 0);
size_t yPrev = prev(y, 1);
size_t yNext = next(y, 1);
size_t zPrev = prev(z, 2);
size_t zNext = next(z, 2);
//compute neigbors
std::vector<size_t> neighbors(20, 0);
//always has faces
neighbors[0] = ToIndex(xPrev, y, z);
neighbors[1] = ToIndex(xNext, y, z);
neighbors[2] = ToIndex(x, yPrev, z);
neighbors[3] = ToIndex(x, yNext, z);
neighbors[4] = ToIndex(x, y, zPrev);
neighbors[5] = ToIndex(x, y, zNext);
//edges
neighbors[6] = ToIndex(x, yPrev, zPrev);
neighbors[7] = ToIndex(x, yPrev, zNext);
neighbors[8] = ToIndex(x, yNext, zPrev);
neighbors[9] = ToIndex(x, yNext, zNext);
neighbors[10] = ToIndex(xPrev, y, zPrev);
neighbors[11] = ToIndex(xPrev, y, zNext);
neighbors[12] = ToIndex(xNext, y, zPrev);
neighbors[13] = ToIndex(xNext, y, zNext);
neighbors[14] = ToIndex(xPrev, yPrev, z);
neighbors[15] = ToIndex(xPrev, yNext, z);
neighbors[16] = ToIndex(xNext, yPrev, z);
neighbors[17] = ToIndex(xNext, yNext, z);
//corners
switch(variant)
{
case 0:
neighbors[18] = ToIndex(xPrev, yPrev, zPrev);
neighbors[19] = ToIndex(xNext, yNext, zNext);
break;
case 1:
neighbors[18] = ToIndex(xPrev, yPrev, zNext);
neighbors[19] = ToIndex(xNext, yNext, zPrev);
break;
case 2:
neighbors[18] = ToIndex(xPrev, yNext, zPrev);
neighbors[19] = ToIndex(xNext, yPrev, zNext);
break;
case 3:
neighbors[18] = ToIndex(xPrev, yNext, zNext);
neighbors[19] = ToIndex(xNext, yPrev, zPrev);
break;
}
return neighbors;
}
std::vector<size_t> TwentyCell(size_t index, size_t variant)
{
size_t x, y, z;
ToTuple(index, x, y, z);
return TwentyCell(x, y, z, variant);
}
};
}
#endif