-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
161 lines (127 loc) · 5.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from models import build_model
from datasets import IndexedInputTargetTranslationDataset
from dictionaries import IndexDictionary
from losses import TokenCrossEntropyLoss, LabelSmoothingLoss
from metrics import AccuracyMetric
from optimizers import NoamOptimizer
from trainer import EpochSeq2SeqTrainer
from utils.log import get_logger
from utils.pipe import input_target_collate_fn
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
import numpy as np
from argparse import ArgumentParser
from datetime import datetime
import json
import random
parser = ArgumentParser(description='Train Transformer')
parser.add_argument('--config', type=str, default=None)
parser.add_argument('--data_dir', type=str, default='data/example/processed')
parser.add_argument('--save_config', type=str, default=None)
parser.add_argument('--save_checkpoint', type=str, default=None)
parser.add_argument('--save_log', type=str, default=None)
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--dataset_limit', type=int, default=None)
parser.add_argument('--print_every', type=int, default=1)
parser.add_argument('--save_every', type=int, default=1)
parser.add_argument('--vocabulary_size', type=int, default=None)
parser.add_argument('--positional_encoding', action='store_true')
parser.add_argument('--d_model', type=int, default=128)
parser.add_argument('--layers_count', type=int, default=1)
parser.add_argument('--heads_count', type=int, default=2)
parser.add_argument('--d_ff', type=int, default=128)
parser.add_argument('--dropout_prob', type=float, default=0.1)
parser.add_argument('--label_smoothing', type=float, default=0.1)
parser.add_argument('--optimizer', type=str, default="Adam", choices=["Noam", "Adam"])
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--clip_grads', action='store_true')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=100)
def run_trainer(config):
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
run_name_format = (
"d_model={d_model}-"
"layers_count={layers_count}-"
"heads_count={heads_count}-"
"pe={positional_encoding}-"
"optimizer={optimizer}-"
"{timestamp}"
)
run_name = run_name_format.format(**config, timestamp=datetime.now().strftime("%Y_%m_%d_%H_%M_%S"))
logger = get_logger(run_name, save_log=config['save_log'])
logger.info(f'Run name : {run_name}')
logger.info(config)
logger.info('Constructing dictionaries...')
source_dictionary = IndexDictionary.load(config['data_dir'], mode='source', vocabulary_size=config['vocabulary_size'])
target_dictionary = IndexDictionary.load(config['data_dir'], mode='target', vocabulary_size=config['vocabulary_size'])
logger.info(f'Source dictionary vocabulary : {source_dictionary.vocabulary_size} tokens')
logger.info(f'Target dictionary vocabulary : {target_dictionary.vocabulary_size} tokens')
logger.info('Building model...')
model = build_model(config, source_dictionary.vocabulary_size, target_dictionary.vocabulary_size)
logger.info(model)
logger.info('Encoder : {parameters_count} parameters'.format(parameters_count=sum([p.nelement() for p in model.encoder.parameters()])))
logger.info('Decoder : {parameters_count} parameters'.format(parameters_count=sum([p.nelement() for p in model.decoder.parameters()])))
logger.info('Total : {parameters_count} parameters'.format(parameters_count=sum([p.nelement() for p in model.parameters()])))
logger.info('Loading datasets...')
train_dataset = IndexedInputTargetTranslationDataset(
data_dir=config['data_dir'],
phase='train',
vocabulary_size=config['vocabulary_size'],
limit=config['dataset_limit'])
val_dataset = IndexedInputTargetTranslationDataset(
data_dir=config['data_dir'],
phase='val',
vocabulary_size=config['vocabulary_size'],
limit=config['dataset_limit'])
train_dataloader = DataLoader(
train_dataset,
batch_size=config['batch_size'],
shuffle=True,
collate_fn=input_target_collate_fn)
val_dataloader = DataLoader(
val_dataset,
batch_size=config['batch_size'],
collate_fn=input_target_collate_fn)
if config['label_smoothing'] > 0.0:
loss_function = LabelSmoothingLoss(label_smoothing=config['label_smoothing'],
vocabulary_size=target_dictionary.vocabulary_size)
else:
loss_function = TokenCrossEntropyLoss()
accuracy_function = AccuracyMetric()
if config['optimizer'] == 'Noam':
optimizer = NoamOptimizer(model.parameters(), d_model=config['d_model'])
elif config['optimizer'] == 'Adam':
optimizer = Adam(model.parameters(), lr=config['lr'])
else:
raise NotImplementedError()
logger.info('Start training...')
trainer = EpochSeq2SeqTrainer(
model=model,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
loss_function=loss_function,
metric_function=accuracy_function,
optimizer=optimizer,
logger=logger,
run_name=run_name,
save_config=config['save_config'],
save_checkpoint=config['save_checkpoint'],
config=config
)
trainer.run(config['epochs'])
return trainer
if __name__ == '__main__':
args = parser.parse_args()
if args.config is not None:
with open(args.config) as f:
config = json.load(f)
default_config = vars(args)
for key, default_value in default_config.items():
if key not in config:
config[key] = default_value
else:
config = vars(args) # convert to dictionary
run_trainer(config)