# RWKV Language Model Implementation
# https://github.com/BlinkDL/RWKV-LM
import numpy as np
import torch
from typing import List
import torch
import torch.nn as nn
from torch.nn import functional as F
class RWKV_RNN(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.n_embd = args.n_embd
self.n_layer = args.n_layer
self.eval()
import types
args = types.SimpleNamespace()
args.MODEL_NAME = '/models/RWKV-x070-Pile-168M'
args.n_layer = 12
args.n_embd = 768
args.vocab_size = 50304
args.head_size = 64
import torch
from torch.nn import functional as F
def sample_logits(logits, temperature=1.0, top_p=1.0, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
sorted_probs, sorted_ids = torch.sort(probs, descending=True)
from tokenizers import Tokenizer
def load_tokenizer(path):
return Tokenizer.from_file(path)
from src.rwkv.model import RWKV_RNN
from src.utils.config import args
def main():
model = RWKV_RNN(args)
# Training logic here
import json
import math
from src.rwkv.model import RWKV_RNN
def evaluate_lambada():
with open("misc/lambada_test.jsonl", "r", encoding="utf-8") as f:
todo = [json.loads(line) for line in f]
import torch
import unittest
from src.rwkv.model import RWKV_RNN
class TestRWKV(unittest.TestCase):
def test_forward_pass(self):
# Test implementation
pass
torch>=2.0.0
numpy>=1.20.0
tokenizers>=0.13.0
# RWKV Language Model Implementation
This is an implementation of the RWKV language model architecture, focusing on efficient inference in RNN mode.
## Setup
1. Install dependencies: `pip install -r requirements.txt`
2. Download model weights
3. Run inference: `python scripts/evaluate.py`