Skip to content

Latest commit

 

History

History
24 lines (24 loc) · 3.32 KB

schedule.md

File metadata and controls

24 lines (24 loc) · 3.32 KB
wk Title Topics Quiz Hand in deliverable Géron (Ed3) Bradski
36 1.1 Basic principles & set-up Introduction
Course organization
Why machine learning?
Machine learning approaches
Python, Numpy primer
OpenCV tutorial
1 20.1.1,20.1.2,20.1.5
37 1.2 Assignment kick-off Assignment introduction
ML portfolio template
How to start? Conditioned acquisition
Data collection example script and sci-kitlearn
Feature engineering
Splitting, exploring data
1 20.1.6,20.1.7
38 1.3 Feature data exploration Basic segmentation and feature extraction
Splitting your data
Exploratory data analysis
Feature engineering
Data preparation
1
ML principles
2.1
2.4 - 2.5
799-848
859-864
875-906
39 1.4 Supervised Machine Learning Classification
k-nearest neighbors
Support vector machines
Decision trees
Random forests
Bagging and boosting
Optimization
3.1 -3.2
3.4
3.6 - 3.7
5.1 - 5.2
6.1 - 6.3
6.7
7.1 - 7.4
40 1.5 ML performance Training a classifier
Thinking about performance
Hyperparameter tuning
Visualizing a decision tree
Confusion matrix
Evaluating a classifier
Log loss
Learning curves
2
Data
Preliminary ML report, Ch. 1-3 3.3
3.5
864
41 1.6 Unsupervised Machine Learning Clustering
K-means
Expectation maximization
Dimensionality reduction
Principal component analysis
Feedback on other groups' preliminary report 8.1 - 8.4
9
42 1.7 Regression Linear regression
Logistic Regression
Lasso Regression
Classification and regression
3
ML performance
4 786-792
43 Holiday
44 1.8 No class
45 1.9 No class resit 1,2,3 Full ML report
46 2.1 Artifical Neural Network (ANN) Machine learning vs deep learning
Biological neuron
Perceptron
Multi-layer perceptron (MLP)
Backpropagation
Regression and classification MLP
10 849-858
47 2.2 Deep Neural Network (DNN) Vanishing and exploding gradients
Transfer learning
Training optimization
Learning rate scheduling
Regularization
Data augmentation
Resit ML report 11 (12,13)
48 2.3 Convolutional Neural Network (CNN) Visual cortex
CNN vs MLP
Recap convolution
Convolutional layer
Pooling layer
CNN architecture
4
ANN
14
49 2.4 Advanced CNN Object detection
Object tracking
Semantic segmentation
Variational autoencoder
Edge computing
Transfer learning
17
50 2.5 Vision Transfomers tbd 5
CNN
51 2.6 Mind and machine,
Cognitive Science introduction
Mental representations
Visual perception
Cognitive approach
Mind as a web
Artificial Intelligence
52 Holiday
1 Holiday
2 2.7 Wrap-up
3 2.8 No class
4 2.9 No class DL report
5 2.10 No class resit 4, 5