forked from AleexHrB/TGA-FIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcudaPathMerge.cu
253 lines (198 loc) · 6.09 KB
/
cudaPathMerge.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <cuda.h>
#include <sys/times.h>
#include <sys/resource.h>
void CheckCudaError(char sms[], int line) {
cudaError_t error;
error = cudaGetLastError();
if (error) {
printf("(ERROR) %s - %s in %s at line %d\n", sms, cudaGetErrorString(error), __FILE__, line);
exit(EXIT_FAILURE);
}
else {
printf("Ok jefe");
}
}
__global__ void insertion(int *v, unsigned int n, unsigned int size_i) {
unsigned int id = threadIdx.x + blockDim.x * blockIdx.x;
unsigned int lim_inf = id * size_i;
unsigned int i = lim_inf;
unsigned int lim_sup = lim_inf + size_i;
//Insertion Sort a bloques de size_i de tamaño
while (i < lim_sup) {
int x = v[i];
int j = i - 1;
while (j >= (int)lim_inf && v[j] > x) {
v[j+1] = v[j];
--j;
}
v[j+1] = x;
++i;
}
}
__global__ void PathMerge(int *v, unsigned int n, int *res, unsigned int size_i, unsigned int i) {
//Threads que usas en cada nivel del arbol por merge
unsigned int num_threads = i/2;
unsigned int id = threadIdx.x + blockDim.x * blockIdx.x;
//Asignar el id a la parte del vector correspondiente
unsigned int part = (id - id%num_threads) / num_threads;
//Dentro de la seccion del vector, identificar los threads
unsigned int id_ins = id%num_threads;
//Posicion Inicial del Vector
unsigned int beg = part*size_i*i;
//Posicion Final del Vector
unsigned int end = beg + size_i * i - 1;
//Posicion del Medio
unsigned int mid = beg + size_i * (i/2) - 1;
//Los vectores ordenados van de v[beg ... mid], v[mid+1...end]
//Tamaño de un vector
unsigned int n_ind = mid - beg + 1;
//La Diagonal que le corresponde
unsigned int DiagNum = id_ins * 2 * n_ind /num_threads;
unsigned int st[2], ed[2], pt[2];
//Punto inicio de la diagonal
st[0] = DiagNum > n_ind ? n_ind : DiagNum;
st[1] = DiagNum > n_ind ? DiagNum - n_ind : 0;
st[0] += beg;
st[1] += beg;
//Punto final de la diagonal
ed[0] = st[1];
ed[1] = st[0];
//Punto medio para hacer busqueda binaria
pt[1] = (st[1] + ed[1]) / 2;
pt[0] = st[0] - (pt[1] - st[1]);
//Busqueda binaria mientras haya dos casillas en la diagonal
while (st[1] + 1 < ed[1]) {
pt[1] = (st[1] + ed[1]) / 2;
pt[0] = st[0] - (pt[1] - st[1]);
//Sumar n_ind para coger los elementos del otro vector
if (v[pt[0]] > v[pt[1] + n_ind - 1]) {
if (v[pt[0] - 1] <= v[pt[1] + n_ind]) break;
else {
st[0] = pt[0];
st[1] = pt[1];
}
}
else {
ed[0] = pt[0];
ed[1] = pt[1];
}
}
//En caso de que haya una solo casilla, decidir (si has llegado hasta aqui deberias de solo mirar los extremos de las diagonales)
if (ed[1] - st[1] == 1) {
if (v[st[0] - 1] <= v[st[1] + n_ind]) {
pt[0] = st[0];
pt[1] = st[1];
}
else {
pt[0] = ed[0];
pt[1] = ed[1];
}
}
//Cada thread hace un numero igual de iteraciones
unsigned int aux = 0;
unsigned int steps = 2 * n_ind/num_threads;
//Posicion del vector para comenzar
unsigned int idx = beg + DiagNum;
unsigned int j = pt[0];
unsigned int k = pt[1] + n_ind;
//Merge normal
while (aux < steps && j <= mid && k <= end) {
if (v[j] <= v[k]) {
res[idx] = v[j];
++idx;
++j;
}
else {
res[idx] = v[k];
++idx;
++k;
}
++aux;
}
while(aux < steps && j <= mid) {
res[idx] = v[j];
++idx;
++j;
++aux;
}
while(aux < steps && k <= end) {
res[idx] = v[k];
++idx;
++k;
++aux;
}
}
int main(int argc, char** argv) {
if (argc != 4) {
printf("Número de parámetros no válido\n");
return -1;
}
int *d_v;
unsigned int n = 1 << atoi(argv[1]);
unsigned int size_i = 1 << atoi(argv[2]);
int *h_v = (int *)malloc(n*sizeof(int));
int *d_aux;
srand(21364);
cudaEvent_t e1, e2, e3, e4, e5, e6;
cudaEventCreate(&e1);
cudaEventCreate(&e2);
cudaEventCreate(&e3);
cudaEventCreate(&e4);
cudaEventCreate(&e5);
cudaEventCreate(&e6);
unsigned int threads = n / size_i;
unsigned int block = threads / 1024;
if (block == 0) block = 1;
const unsigned int sorted_mode = 0;
const unsigned int random_mode = 1;
const unsigned int sorted_back_mode = 2;
const unsigned int mode = atoi(argv[3]);
if (mode == random_mode) for (unsigned int i = 0; i < n; ++i) h_v[i] = rand();
else if (mode == sorted_mode) for (unsigned int i = 0; i < n; ++i) h_v[i] = i;
else for (unsigned int i = 0; i < n; ++i) h_v[i] = n - i;
cudaMalloc((void **)&d_v, n*sizeof(int));
cudaMalloc((void **)&d_aux, n*sizeof(int));
cudaEventRecord(e1, 0);
cudaMemcpyAsync(d_v, h_v, n*sizeof(int), cudaMemcpyHostToDevice);
cudaEventRecord(e2, 0);
cudaEventSynchronize(e2);
float HtD_t;
cudaEventElapsedTime(&HtD_t, e1, e2);
cudaEventRecord(e3, 0);
insertion<<<block, threads/block>>>(d_v,n, size_i);
unsigned int b = 0;
for (unsigned int i = 2; i <= n/size_i; i *= 2) {
unsigned int threads_merge = threads / i;
unsigned int block_merge = threads_merge / 1024;
if (block_merge == 0) block_merge = 1;
if (!b) PathMerge<<<block_merge, threads_merge/block_merge>>>(d_v, n, d_aux, size_i, i);
else PathMerge<<<block_merge, threads_merge/block_merge>>>(d_aux, n, d_v, size_i, i);
b = !b;
}
cudaEventRecord(e4, 0);
cudaEventSynchronize(e4);
float kernel_t;
cudaEventElapsedTime(&kernel_t, e3, e4);
cudaEventRecord(e5, 0);
if (b) cudaMemcpyAsync(h_v, d_aux, n*sizeof(int), cudaMemcpyDeviceToHost);
else cudaMemcpyAsync(h_v, d_v, n*sizeof(int), cudaMemcpyDeviceToHost);
cudaEventRecord(e6, 0);
cudaEventSynchronize(e6);
float DtH_t;
cudaEventElapsedTime(&DtH_t, e5, e6);
//for (unsigned int i = 0; i < n; ++i) printf("%d\n", h_v[i]);
char s[10];
if (mode == random_mode) strcpy(s, "Random");
else if (mode == sorted_mode) strcpy(s, "Ordenado");
else strcpy(s, "Al Revés");
printf("Modo: %s\n", s);
printf("n: %d, size_i: %d\n", n, size_i);
printf("Tiempo Kernels: %f ms\n", kernel_t);
printf("Ancho de Banda HtD: %f GB/s, Ancho de Banda Kernels: %f GB/s, Ancho de Banda DtH: %f GB/s\n", (n*sizeof(unsigned int)) / (HtD_t * 1e6), (n*sizeof(unsigned int)) / ((kernel_t+DtH_t) * 1e6), (n*sizeof(unsigned int)) / (DtH_t * 1e6));
free(h_v);
cudaFree(d_v);
cudaFree(d_aux);
}