forked from profjsb/deepCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper.bib
151 lines (141 loc) · 9.61 KB
/
paper.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
@ARTICLE{deepcr,
author = {{Zhang}, K. and {Bloom}, J.~S.},
title = "{deepCR: Cosmic Ray Rejection with Deep Learning}",
journal = {arXiv e-prints},
archivePrefix = "arXiv",
eprint = {1907.09500},
primaryClass = "astro-ph.IM",
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, Computer Science - Computer Vision and Pattern Recognition},
year = 2019,
month = jul,
adsurl = {https://ui.adsabs.harvard.edu/abs/2019arXiv190709500Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{lacosmic,
author = {{van Dokkum}, P.~G.},
title = "{Cosmic-Ray Rejection by Laplacian Edge Detection}",
journal = {\pasp},
eprint = {astro-ph/0108003},
keywords = {Instrumentation: Detectors, Methods: Data Analysis-techniques: image processing},
year = 2001,
month = nov,
volume = 113,
pages = {1420-1427},
doi = {10.1086/323894},
adsurl = {https://ui.adsabs.harvard.edu/abs/2001PASP..113.1420V},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{pytorch,
title = {Automatic differentiation in PyTorch},
author = {Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and Yang, Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and Antiga, Luca and Lerer, Adam},
booktitle = {NIPS-Workshop},
year = {2017}
}
@ARTICLE{vdw11,
author={S. {van der Walt} and S. C. {Colbert} and G. {Varoquaux}},
journal={Computing in Science Engineering},
title={The NumPy Array: A Structure for Efficient Numerical Computation},
year={2011},
volume={13},
number={2},
pages={22-30},
keywords={data structures;high level languages;mathematics computing;numerical analysis;numerical computation;numpy array;numerical data;high level language;Python programming language;Arrays;Numerical analysis;Performance evaluation;Computational efficiency;Finite element methods;Vector quantization;Resource management;Python;NumPy;scientific programming;numerical computations;programming libraries},
doi={10.1109/MCSE.2011.37},
ISSN={1521-9615},
month={March},}
@inproceedings{astrodrizzle,
author = {{Hack}, W.~J. and {Dencheva}, N. and {Fruchter}, A.~S. and {Armstrong}, A. and
{Avila}, R. and {Baggett}, S. and {Bray}, E. and {Droettboom}, M. and
{Dulude}, M. and {Gonzaga}, S. and {Grogin}, N.~A. and {Kozhurina-Platais}, V. and
{Lucas}, R.~A. and {Mack}, J. and {MacKenty}, J. and {Petro}, L. and
{Pirzkal}, N. and {Rajan}, A. and {Smith}, L.~J. and {Sontag}, C. and
{Ubeda}, L.},
title = "{AstroDrizzle: More than a New MultiDrizzle}",
booktitle = {American Astronomical Society Meeting Abstracts \#220},
year = 2012,
series = {American Astronomical Society Meeting Abstracts},
volume = 220,
month = may,
eid = {135.15},
pages = {135.15},
adsurl = {https://ui.adsabs.harvard.edu/abs/2012AAS...22013515H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@misc{scipy,
author = {Eric Jones and Travis Oliphant and Pearu Peterson and others},
title = {{SciPy}: Open source scientific tools for {Python}},
year = {2001},
howpublished = {\url{http://www.scipy.org/}},
note = {Accessed: 2019-07-20}
}
@ARTICLE{matplotlib,
author = {{Hunter}, J.~D.},
title = "{Matplotlib: A 2D Graphics Environment}",
journal = {Computing in Science and Engineering},
keywords = {Python, Scripting languages, Application development, Scientific programming },
year = 2007,
month = may,
volume = 9,
pages = {90-95},
doi = {10.1109/MCSE.2007.55},
adsurl = {https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@misc{astroscrappy,
author = {Curtis McCully and
Steve Crawford and
Gabor Kovacs and
Erik Tollerud and
Edward Betts and
Larry Bradley and
Matt Craig and
James Turner and
Ole Streicher and
Brigitta Sipocz and
Thomas Robitaille and
Christoph Deil},
title = {astropy/astroscrappy: v1.0.5 Zenodo Release},
month = nov,
year = 2018,
doi = {10.5281/zenodo.1482019},
url = {https://doi.org/10.5281/zenodo.1482019}
}
@conference{jupyter,
Author = {Thomas Kluyver and Benjamin Ragan-Kelley and Fernando P{\'e}rez and Brian Granger and Matthias Bussonnier and Jonathan Frederic and Kyle Kelley and Jessica Hamrick and Jason Grout and Sylvain Corlay and Paul Ivanov and Dami{\'a}n Avila and Safia Abdalla and Carol Willing},
Booktitle = {Positioning and Power in Academic Publishing: Players, Agents and Agendas},
Editor = {F. Loizides and B. Schmidt},
Organization = {IOS Press},
Pages = {87 - 90},
Title = {Jupyter Notebooks -- a publishing format for reproducible computational workflows},
Year = {2016}}
@article{scikit-image,
title = {scikit-image: image processing in {Python}},
volume = {2},
issn = {2167-8359},
shorttitle = {scikit-image},
url = {https://peerj.com/articles/453},
doi = {10.7717/peerj.453},
abstract = {scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.},
language = {en},
urldate = {2019-07-19},
journal = {PeerJ},
author = {van der Walt, Stéfan and Sch\"onberger, Johannes L. and Nunez-Iglesias, Juan and Boulogne, François and Warner, Joshua D. and Yager, Neil and Gouillart, Emmanuelle and Yu, Tony},
month = jun,
year = {2014},
pages = {e453},
file = {Full Text PDF:/Users/Keming/Zotero/storage/U7NG6FFB/Walt et al. - 2014 - scikit-image image processing in Python.pdf:application/pdf;Snapshot:/Users/Keming/Zotero/storage/IMXCZYXM/453.html:text/html}
}
@article{astropy,
doi = {10.3847/1538-3881/aabc4f},
url = {https://doi.org/10.3847/1538-3881/aabc4f},
year = 2018,
month = {aug},
publisher = {American Astronomical Society},
volume = {156},
number = {3},
pages = {123},
author = {{Astropy Collaboration} and A. M. Price-Whelan and B. M. Sip{\H{o}}cz and H. M. G\"unther and P. L. Lim and S. M. Crawford and S. Conseil and D. L. Shupe and M. W. Craig and N. Dencheva and A. Ginsburg and J. T. VanderPlas and L. D. Bradley and D. P{\'{e}}rez-Su{\'{a}}rez and M. de Val-Borro and T. L. Aldcroft and K. L. Cruz and T. P. Robitaille and E. J. Tollerud and C. Ardelean and T. Babej and Y. P. Bach and M. Bachetti and A. V. Bakanov and S. P. Bamford and G. Barentsen and P. Barmby and A. Baumbach and K. L. Berry and F. Biscani and M. Boquien and K. A. Bostroem and L. G. Bouma and G. B. Brammer and E. M. Bray and H. Breytenbach and H. Buddelmeijer and D. J. Burke and G. Calderone and J. L. Cano Rodr{\'{\i}}guez and M. Cara and J. V. M. Cardoso and S. Cheedella and Y. Copin and L. Corrales and D. Crichton and D. D'Avella and C. Deil and {\'{E}}. Depagne and J. P. Dietrich and A. Donath and M. Droettboom and N. Earl and T. Erben and S. Fabbro and L. A. Ferreira and T. Finethy and R. T. Fox and L. H. Garrison and S. L. J. Gibbons and D. A. Goldstein and R. Gommers and J. P. Greco and P. Greenfield and A. M. Groener and F. Grollier and A. Hagen and P. Hirst and D. Homeier and A. J. Horton and G. Hosseinzadeh and L. Hu and J. S. Hunkeler and {\v{Z}}. Ivezi{\'{c}} and A. Jain and T. Jenness and G. Kanarek and S. Kendrew and N. S. Kern and W. E. Kerzendorf and A. Khvalko and J. King and D. Kirkby and A. M. Kulkarni and A. Kumar and A. Lee and D. Lenz and S. P. Littlefair and Z. Ma and D. M. Macleod and M. Mastropietro and C. McCully and S. Montagnac and B. M. Morris and M. Mueller and S. J. Mumford and D. Muna and N. A. Murphy and S. Nelson and G. H. Nguyen and J. P. Ninan and M. Nöthe and S. Ogaz and S. Oh and J. K. Parejko and N. Parley and S. Pascual and R. Patil and A. A. Patil and A. L. Plunkett and J. X. Prochaska and T. Rastogi and V. Reddy Janga and J. Sabater and P. Sakurikar and M. Seifert and L. E. Sherbert and H. Sherwood-Taylor and A. Y. Shih and J. Sick and M. T. Silbiger and S. Singanamalla and L. P. Singer and P. H. Sladen and K. A. Sooley and S. Sornarajah and O. Streicher and P. Teuben and S. W. Thomas and G. R. Tremblay and J. E. H. Turner and V. Terr{\'{o}}n and M. H. van Kerkwijk and A. de la Vega and L. L. Watkins and B. A. Weaver and J. B. Whitmore and J. Woillez and V. Zabalza and and and},
title = {The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package},
journal = {The Astronomical Journal},
abstract = {The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.}
}