-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsws.qmd
42 lines (27 loc) · 1.99 KB
/
psws.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Weighting in Surveys {.unnumbered}
::: {.callout-note}
This section contains advanced materials for those who are interested (optional).
:::
## Video content
::: {style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden;"}
<iframe src="https://www.youtube.com/embed/T7M4r3htN2w" style="position: absolute; top: 0; left: 0; width: 100%; height: 100%; border:0;" allowfullscreen>
</iframe>
:::
## Slides
[Download](https://github.com/ehsanx/PS-survey/raw/main/slides/5PropensityScoreweightingwithincomplexsurvey.pdf)
## Summary of topics discussed
### Tabular summary
| Step | Basic IPW Process | IPW in Complex Survey |
|------|-----------------------------|---------------------------------|
| 1 | Fit PS model (A~L) | Fit PS model (A~L) with survey-weights as design variable (as in Austin et al. (2018))/covariate (as in DuGoff et al. (2014)) |
| 2 | Convert PS to IPW(ATE) | Convert PS to IPW(ATE) |
| | $IPW = 1/PS$, if $A = 1$ | $IPW = 1/PS$, if $A = 1$ |
| | $IPW = 1/(1-PS)$, if $A = 0$ | $IPW = 1/(1-PS)$, if $A = 0$ |
| 3 | Check balance using SMD in IPW-weighted data | Check balance using SMD in data weighted by w = IPW * survey-weights |
| 4 | Apply outcome model with weight = IPW | Apply outcome model with weight = IPW * survey-weights |
If ATT is the target parameter, then use
$IPW(ATT) = 1$, if $A = 1$
$IPW(ATT) = PS/(1-PS)$, if $A = 0$
### Reference (Optional)
1. Ridgeway, G., Kovalchik, S. A., Griffin, B. A., & Kabeto, M. U. (2015). [Propensity score analysis with survey weighted data](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802372/). Journal of causal inference, 3(2), 237-249.
2. Austin, Peter C., and Elizabeth A. Stuart. 2015. [Moving Towards Best Practice When Using Inverse Probability of Treatment Weighting (IPTW) Using the Propensity Score to Estimate Causal Treatment Effects in Observational Studies](https://doi.org/10.1002/sim.6607). Statistics in Medicine 34 (28): 3661–79.