-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhologan.py
369 lines (312 loc) · 15.4 KB
/
hologan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
"""
HoloGAN implementation in PyTorch
May 17, 2020
"""
import os
import csv
import time
import math
import collections
import torch
import numpy as np
#import matplotlib.pyplot as plt
from os import listdir
from os.path import isfile, join
from torch import nn
from torch.optim import Adam
from torch.autograd import Variable
from torchvision import datasets, transforms
from scipy.misc import imsave
from datetime import datetime
from discriminator import Discriminator
from generator import Generator
class HoloGAN():
"""HoloGAN.
HoloGAN model is the Unsupervised learning of 3D representations from natural images.
The paper can be found in https://www.monkeyoverflow.com/hologan-unsupervised-learning-\
of-3d-representations-from-natural-images/
"""
def __init__(self, args):
super(HoloGAN, self).__init__()
torch.manual_seed(args.seed)
use_cuda = args.gpu and torch.cuda.is_available()
args.device = torch.device("cuda" if use_cuda else "cpu")
# model configurations
if args.load_dis is None:
self.discriminator = Discriminator(in_planes=3, out_planes=64,
z_planes=args.z_dim).to(args.device)
else:
self.discriminator = torch.load(args.load_dis).to(args.device)
if args.load_gen is None:
self.generator = Generator(in_planes=64, out_planes=3,
z_planes=args.z_dim, gpu=use_cuda).to(args.device)
else:
self.generator = torch.load(args.load_gen).to(args.device)
# optimizer configurations
self.optimizer_discriminator = Adam(self.discriminator.parameters(),
lr=args.d_lr, betas=(args.beta1, args.beta2))
self.optimizer_generator = Adam(self.generator.parameters(),
lr=args.d_lr, betas=(args.beta1, args.beta2))
# Load dataset
self.train_loader = self.load_dataset(args)
# create result folder
args.results_dir = os.path.join("results", args.dataset)
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
# create history file
args.hist_file = open(os.path.join(args.results_dir, "history.csv"), "a", newline="")
args.recorder = csv.writer(args.hist_file, delimiter=",")
if os.stat(os.path.join(args.results_dir, "history.csv")).st_size == 0:
args.recorder.writerow(["epoch", "time", "d_loss", "g_loss", "q_loss"])
# create model folder
args.models_dir = os.path.join("models", args.dataset)
if not os.path.exists(args.models_dir):
os.makedirs(args.models_dir)
# continue to broken training
args.start_epoch = 0
if args.load_dis is None:
load_model = ""
for modelname in listdir(args.models_dir):
if isfile(join(args.models_dir, modelname)) and \
("discriminator.v" in modelname or "generator.v" in modelname):
start_loc = modelname[:-3].rfind(".v") + 2
end_loc = modelname[:-3].rfind("_")
epoch_str = modelname[start_loc:end_loc]
batch_str = modelname[end_loc:]
dis_model = os.path.join(args.models_dir, "discriminator.v"+epoch_str+batch_str)
gen_model = os.path.join(args.models_dir, "generator.v"+epoch_str+batch_str)
if args.start_epoch < int(epoch_str) and os.path.exists(dis_model) and os.path.exists(gen_model):
args.start_epoch = int(epoch_str)
load_model = epoch_str + batch_str
if args.start_epoch > 0:
print("Broken training is detected. Starting epoch is", args.start_epoch)
dis_model = os.path.join(args.models_dir, "discriminator.v"+load_model)
gen_model = os.path.join(args.models_dir, "generator.v"+load_model)
self.discriminator = torch.load(dis_model).to(args.device)
self.generator = torch.load(gen_model).to(args.device)
# create sampling folder
args.samples_dir = os.path.join("samples", args.dataset)
if not os.path.exists(args.samples_dir):
os.makedirs(args.samples_dir)
def train(self, args):
"""HoloGAN trainer
This method train the HoloGAN model.
"""
d_lr = args.d_lr
g_lr = args.g_lr
for epoch in range(args.start_epoch, args.max_epochs):
# Adaptive learning rate
if epoch >= args.epoch_step:
adaptive_lr = (args.max_epochs - epoch) / (args.max_epochs - args.epoch_step)
d_lr *= adaptive_lr
g_lr *= adaptive_lr
for param_group in self.optimizer_discriminator.param_groups:
param_group['lr'] = d_lr
for param_group in self.optimizer_generator.param_groups:
param_group['lr'] = g_lr
result = collections.OrderedDict({"epoch":epoch})
result.update(self.train_epoch(args, epoch))
# validate and keep history at each log interval
self.save_history(args, result)
# save the model giving the best validation results as a final model
if not args.no_save_model:
self.save_model(args, args.max_epochs-1, best=True)
def train_epoch(self, args, epoch):
"""train an epoch
This method train an epoch.
"""
batch = {"time":[], "g":[], "d":[], "q":[]}
self.generator.train()
self.discriminator.train()
original_batch_size = args.batch_size
for idx, (data, _) in enumerate(self.train_loader):
print("Epoch: [{:2d}] [{:3d}/{:3d}] ".format(epoch, idx, len(self.train_loader)), end="")
x = data.to(args.device)
args.batch_size = len(x)
# rnd_state = np.random.RandomState(seed)
z = self.sample_z(args)
view_in = self.sample_view(args)
d_loss, g_loss, q_loss, elapsed_time = self.train_batch(x, z, view_in, args, idx)
batch["d"].append(float(d_loss))
batch["g"].append(float(g_loss))
batch["q"].append(float(q_loss))
batch["time"].append(float(elapsed_time))
# print the training results of batch
print("time: {:.2f}sec, d_loss: {:.4f}, g_loss: {:.4f}, q_loss: {:.4f}"
.format(elapsed_time, float(d_loss), float(g_loss), float(q_loss)))
if (idx % args.log_interval == 0):
self.sample(args, epoch, idx, collection=True)
# save model parameters
if not args.no_save_model:
self.save_model(args, epoch, idx)
result = {"time" : round(np.mean(batch["time"])),
"d_loss": round(np.mean(batch["d"]), 4),
"g_loss": round(np.mean(batch["g"]), 4),
"q_loss": round(np.mean(batch["q"]), 4)}
args.batch_size = original_batch_size
return result
def train_batch(self, x, z, view_in, args, batch_id):
"""train the given batch
Arguments are
* x: images in the batch.
* z: latent variables in the batch.
* view_in: 3D transformation parameters.
This method train the given batch and return the resulting loss values.
"""
start = time.process_time()
loss = nn.BCEWithLogitsLoss()
# Train the generator.
self.optimizer_generator.zero_grad()
fake = self.generator(z, view_in)
d_fake, g_z_pred = self.discriminator(fake[:, :, :64, :64])
one = torch.ones(d_fake.shape).to(args.device)
gen_loss = loss(d_fake, one)
q_loss = torch.mean((g_z_pred - z)**2)
if batch_id % args.update_g_every_d == 0:
(gen_loss + args.lambda_latent * q_loss).backward()
self.optimizer_generator.step()
# Train the discriminator.
self.optimizer_discriminator.zero_grad()
d_fake, d_z_pred = self.discriminator(fake[:, :, :64, :64].detach())
d_real, _ = self.discriminator(x)
one = torch.ones(d_real.shape).to(args.device)
zero = torch.zeros(d_fake.shape).to(args.device)
dis_loss = loss(d_real, one) + loss(d_fake, zero)
q_loss = torch.mean((d_z_pred - z)**2)
(dis_loss + args.lambda_latent * q_loss).backward()
self.optimizer_discriminator.step()
elapsed_time = time.process_time() - start
return float(dis_loss), float(gen_loss), float(q_loss), elapsed_time
def sample(self, args, epoch=0, batch=0, trained=False, collection=False):
"""HoloGAN sampler
This samples images in the given configuration from the HoloGAN.
Images can be found in the "args.samples_dir" directory.
"""
z = self.sample_z(args)
if args.rotate_azimuth:
low, high, step = args.azimuth_low, args.azimuth_high+1, 5
elif args.rotate_elevation:
low, high, step = args.elevation_low, args.elevation_high, 5
else:
low, high, step = 0, 10, 1
if not trained:
folder = os.path.join(args.samples_dir, "epoch"+str(epoch)+"_"+str(batch))
else:
now = datetime.now()
timestamp = datetime.timestamp(now)
folder = os.path.join(args.samples_dir, "sample_"+str(timestamp))
if not os.path.exists(folder):
os.makedirs(folder)
for i in range(low, high, step):
# Apply only azimuth rotation
if args.rotate_azimuth:
view_in = torch.tensor([i*math.pi/180, 0, 1.0, 0, 0, 0])
view_in = view_in.repeat(args.batch_size, 1)
# Apply only elevation rotation
elif args.rotate_elevation:
view_in = torch.tensor([270*math.pi/180, i*math.pi/180, 1.0, 0, 0, 0])
view_in = view_in.repeat(args.batch_size, 1)
# Apply default transformation
else:
view_in = self.sample_view(args)
samples = self.generator(z, view_in).permute(0, 2, 3, 1)
normalized = ((samples+1.)/2.).cpu().detach().numpy()
image = np.clip(255*normalized, 0, 255).astype(np.uint8)
if collection and args.batch_size >= 4:
imsave(os.path.join(folder, "samples_"+str(i)+".png"),
self.merge_samples(image, [args.batch_size // 4, 4]))
else:
imsave(os.path.join(folder, "samples_"+str(i)+".png"), image[0])
if trained:
print("Samples are saved in", os.path.join(folder, "samples_"+str(i)+".png"))
def load_dataset(self, args):
"""dataset loader.
This loads the dataset.
"""
kwargs = {'num_workers': 2, 'pin_memory': True} if args.device == 'cuda' else {}
if args.dataset == 'celebA':
transform = transforms.Compose([\
transforms.CenterCrop(108),
transforms.Resize(64),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
trainset = datasets.ImageFolder(root=args.image_path, transform=transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,\
shuffle=True, **kwargs)
return train_loader
def sample_z(self, args):
"""Latent variables sampler
This samples latent variables from the uniform distribution [-1,1].
"""
tensor = torch.cuda.FloatTensor if args.device == "cuda" else torch.FloatTensor
size = (args.batch_size, args.z_dim)
return tensor(np.random.uniform(-1., 1., size)).to(args.device)
def sample_view(self, args):
"""Transformation parameters sampler
This samples view (or transformation parameters) from the given configuration.
"""
# the azimuth angle (theta) is around y
theta = np.random.randint(args.azimuth_low, args.azimuth_high,
(args.batch_size)).astype(np.float)
theta = theta * math.pi / 180.0
# the elevation angle (gamma) is around x
if args.elevation_low < args.elevation_high:
gamma = np.random.randint(args.elevation_low, args.elevation_high,
(args.batch_size)).astype(np.float)
gamma = gamma * math.pi / 180.0
else:
gamma = np.zeros(args.batch_size).astype(np.float)
scale = float(np.random.uniform(args.scale_low, args.scale_high))
shift_x = args.transX_low + np.random.random(args.batch_size) * \
(args.transX_high - args.transX_low)
shift_y = args.transY_low + np.random.random(args.batch_size) * \
(args.transY_high - args.transY_low)
shift_z = args.transZ_low + np.random.random(args.batch_size) * \
(args.transZ_high - args.transZ_low)
view = np.zeros((args.batch_size, 6))
column = np.arange(0, args.batch_size)
view[column, 0] = theta
view[column, 1] = gamma
view[column, 2] = scale
view[column, 3] = shift_x
view[column, 4] = shift_y
view[column, 5] = shift_z
return view
def save_history(self, args, record):
"""save a record to the history file"""
args.recorder.writerow([str(record[key]) for key in record])
args.hist_file.flush()
def save_model(self, args, epoch, batch=0, best=False):
"""save model
Arguments are
* epoch: epoch number.
* best: if the model is in the final epoch.
This method saves the trained discriminator and generator in a pt file.
"""
if best is False:
dis_model = os.path.join(args.models_dir, "discriminator.v"+str(epoch)+"_"+str(batch)+".pt")
gen_model = os.path.join(args.models_dir, "generator.v"+str(epoch)+"_"+str(batch)+".pt")
torch.save(self.discriminator, dis_model)
torch.save(self.generator, gen_model)
else:
batch = len(self.train_loader)-1
dis_model = os.path.join(args.models_dir, "discriminator.v"+str(epoch)+"_"+str(batch)+".pt")
gen_model = os.path.join(args.models_dir, "generator.v"+str(epoch)+"_"+str(batch)+".pt")
while batch > 0 and not (os.path.exists(dis_model) and os.path.exists(gen_model)):
batch -= 1
dis_model = os.path.join(args.models_dir, "discriminator.v"+str(epoch)+"_"+str(batch)+".pt")
gen_model = os.path.join(args.models_dir, "generator.v"+str(epoch)+"_"+str(batch)+".pt")
train_files = os.listdir(args.models_dir)
for train_file in train_files:
if not train_file.endswith(".v"+str(epoch)+"_"+str(batch)+".pt"):
os.remove(os.path.join(args.models_dir, train_file))
os.rename(dis_model, os.path.join(args.models_dir, "discriminator.pt"))
os.rename(gen_model, os.path.join(args.models_dir, "generator.pt"))
def merge_samples(self, images, size):
_, h, w, c = images.shape
collection = np.zeros((h * size[0], w * size[1], c))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
collection[j*h : j*h+h, i*w : i*w+w, :] = image
return collection