-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfft.cpp
116 lines (107 loc) · 2.81 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// fft.cpp
// Eric K. Zhang; Nov. 20, 2017
#include <bits/stdc++.h>
using namespace std;
template <typename T>
struct Complex {
T real, imag;
Complex(T x=(T)0, T y=(T)0) : real(x), imag(y) {}
Complex conj() { return Complex(real, -imag); }
Complex operator+(const Complex& c) { return Complex(real + c.real, imag + c.imag); }
Complex operator-(const Complex& c) { return Complex(real - c.real, imag - c.imag); }
Complex operator*(const T& num) { return Complex(real * num, imag * num); }
Complex operator/(const T& num) { return Complex(real / num, imag / num); }
Complex operator*(const Complex& c) {
return Complex(real * c.real - imag * c.imag, real * c.imag + imag * c.real);
}
Complex operator/(const Complex& c) {
return *this * c.conj() / (c.x * c.x + c.y * c.y);
}
};
typedef int itype;
typedef double dtype;
typedef Complex<dtype> ftype;
typedef vector<itype> poly;
const dtype PI = 4 * atan((dtype) 1);
void fft(ftype* A, int n, bool inv=false) {
for (int i = 1, j = n / 2; i + 1 < n; i++) {
if (i < j) swap(A[i], A[j]);
int t = n / 2;
while (j >= t) j -= t, t >>= 1;
j += t;
}
for (int h = 2; h <= n; h <<= 1) {
ftype wm(cos(2 * PI / h), sin(2 * PI / h));
for (int i = 0; i < n; i += h) {
ftype w(1);
for (int j = i; j < i + h / 2; j++) {
ftype x = A[j], y = w * A[j + h / 2];
A[j + h / 2] = x - y;
A[j] = x + y;
w = w * wm;
}
}
}
if (inv) {
reverse(A + 1, A + n);
for (int i = 0; i < n; i++) {
A[i] = A[i] / n;
}
}
}
poly pmul(poly p, poly q) {
int dim = p.size() + q.size() - 1;
while (__builtin_popcount(dim) != 1) ++dim;
ftype* a = new ftype[dim];
ftype* b = new ftype[dim];
for (int i = 0; i < p.size(); i++)
a[i] = p[i];
for (int i = 0; i < q.size(); i++)
b[i] = q[i];
fft(a, dim);
fft(b, dim);
for (int i = 0; i < dim; i++)
a[i] = a[i] * b[i];
fft(a, dim, true);
poly res(dim);
for (int i = 0; i < dim; i++)
res[i] = round(a[i].real);
while (res.size() && !res.back())
res.pop_back();
delete[] a;
delete[] b;
return res;
}
poly ppow(poly p, int k, int mod) {
poly ret = {1};
for (int i = 0; (1 << i) <= k; i++) {
if (k & (1 << i)) {
ret = pmul(ret, p);
for (int& c : ret)
c %= mod;
}
p = pmul(p, p);
for (int& c : p)
c %= mod;
}
return ret;
}
string pprint(poly p) {
string ret;
bool leading = true;
for (int i = p.size() - 1; i >= 0; i--) {
if (!p[i]) continue;
if (leading) ret += (p[i] < 0 ? "-" : "");
else ret += (p[i] < 0 ? " - " : " + ");
leading = false;
if (abs(p[i]) != 1) ret += to_string(abs(p[i]));
if (i) ret += (i == 1 ? "x" : "x^" + to_string(i));
}
return ret;
}
int main() {
poly p = {3, -7, 5}, q = {-3, 9, -2};
poly r = pmul(p, q);
cout << "(" << pprint(p) << ")(" << pprint(q) << ") = " << pprint(r) << endl;
cout << "(" << pprint(p) << ")^3 = " << pprint(ppow(p, 3, 1e4)) << endl;
}