-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmincost_maxflow.cpp
146 lines (129 loc) · 3.22 KB
/
mincost_maxflow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// mincost_maxflow.cpp
// Eric K. Zhang; Nov. 22, 2017
#include <bits/stdc++.h>
using namespace std;
/* Minimum-Cost, Maximum-Flow solver using Successive Shortest Paths with Dijkstra and SPFA-SLF.
* Requirements:
* - Duplicate or antiparallel edges with different costs are allowed.
* - No negative cycles.
* Time Complexity: O(Ef lg V) average-case, O(VE + Ef lg V) worst-case with negative costs.
*/
template<int V, class T=long long>
class mcmf {
/* making this static breaks compilation on -O0, but not on -O2; unsure why */
const T INF = numeric_limits<T>::max();
struct edge {
int t, rev;
T cap, cost, f;
};
vector<edge> adj[V];
T dist[V];
int pre[V];
bool vis[V];
void spfa(int s) { /* only needed if there are negative costs */
list<int> q;
memset(pre, -1, sizeof pre);
memset(vis, 0, sizeof vis);
fill(dist, dist + V, INF);
dist[s] = 0;
q.push_back(s);
while (!q.empty()) {
int v = q.front();
q.pop_front();
vis[v] = false;
for (auto e : adj[v]) if (e.cap != e.f) {
int u = e.t;
T d = dist[v] + e.cost;
if (d < dist[u]) {
dist[u] = d, pre[u] = e.rev;
if (!vis[u]) {
if (q.size() && d < dist[q.front()]) q.push_front(u);
else q.push_back(u);
vis[u] = true;
}
}
}
}
}
priority_queue<pair<T, int>, vector<pair<T, int> >,
greater<pair<T, int> > > pq; /* for dijkstra */
void dijkstra(int s) {
memset(pre, -1, sizeof pre);
memset(vis, 0, sizeof vis);
fill(dist, dist + V, INF);
dist[s] = 0;
pq.emplace(0, s);
while (!pq.empty()) {
int v = pq.top().second;
pq.pop();
if (vis[v]) continue;
vis[v] = true;
for (auto e : adj[v]) if (e.cap != e.f) {
int u = e.t;
T d = dist[v] + e.cost;
if (d < dist[u]) {
dist[u] = d, pre[u] = e.rev;
pq.emplace(d, u);
}
}
}
}
void reweight() {
for (int v = 0; v < V; v++)
for (auto& e : adj[v])
e.cost += dist[v] - dist[e.t];
}
public:
void add(int u, int v, T cap=1, T cost=0) {
adj[u].push_back({ v, (int) adj[v].size(), cap, cost, 0 });
adj[v].push_back({ u, (int) adj[u].size() - 1, 0, -cost, 0 });
}
pair<T, T> calc(int s, int t) {
spfa(s); /* comment out if all costs are non-negative */
T totalflow = 0, totalcost = 0;
T fcost = dist[t];
while (true) {
reweight();
dijkstra(s);
if (~pre[t]) {
fcost += dist[t];
T flow = INF;
for (int v = t; ~pre[v]; v = adj[v][pre[v]].t) {
edge& r = adj[v][pre[v]];
edge& e = adj[r.t][r.rev];
flow = min(flow, e.cap - e.f);
}
for (int v = t; ~pre[v]; v = adj[v][pre[v]].t) {
edge& r = adj[v][pre[v]];
edge& e = adj[r.t][r.rev];
e.f += flow;
r.f -= flow;
}
totalflow += flow;
totalcost += flow * fcost;
}
else break;
}
return { totalflow, totalcost };
}
void clear() {
for (int i = 0; i < V; i++) {
adj[i].clear();
dist[i] = pre[i] = vis[i] = 0;
}
}
};
int main() {
/* Example of usage */
mcmf<4> network;
network.add(0, 1, 75, 15);
network.add(0, 2, 50, 30);
network.add(1, 2, 40, 5);
network.add(1, 3, 50, 10);
network.add(2, 3, 30, 20);
int flow, cost;
tie(flow, cost) = network.calc(0, 3);
/* Max-flow should be 80, and min-cost should be 2500. */
cout << flow << ' ' << cost << endl;
return 0;
}