|
| 1 | +import elfi |
| 2 | +import matplotlib |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import numpy as np |
| 5 | +import scipy.stats as ss |
| 6 | + |
| 7 | +from elfi import BOLFI |
| 8 | +from matplotlib.animation import FuncAnimation, FFMpegWriter |
| 9 | + |
| 10 | +seed = 0 |
| 11 | + |
| 12 | +# Number of minimum samples. |
| 13 | +n_low = 1 |
| 14 | +# Number of maximum samples. |
| 15 | +n = 5 |
| 16 | +np.random.seed(seed) |
| 17 | +gauss_samples = ss.norm().rvs(size=n) |
| 18 | +""" |
| 19 | +t_plus_range = [0.36, 0.44] |
| 20 | +t_plus = np.linspace(*t_plus_range, 200) |
| 21 | +model = lambda t_plus: t_plus**2 |
| 22 | +x_range = [0.36, 0.44] |
| 23 | +y_range = [-0.8, 1.5] |
| 24 | +canvas = np.meshgrid(np.linspace(*x_range, 200), |
| 25 | + np.linspace(*reversed(y_range), 200)) |
| 26 | +t_plus_samples = t_plus_range.copy() |
| 27 | +
|
| 28 | +fit_spline = [] |
| 29 | +fit_spline_uncertainty = [] |
| 30 | +fit_acq = [] |
| 31 | +fit_discrepancy = [] |
| 32 | +fit_acq_t_plus = [] |
| 33 | +
|
| 34 | +prior = elfi.Prior('norm', 0.4, 0.02**2, name='t_+') |
| 35 | +elfi_simulator = elfi.Simulator( |
| 36 | + lambda *args, **_: model(args[0]) + ss.norm().rvs(size=1)[0], |
| 37 | + prior, observed=model(0.415) |
| 38 | +) |
| 39 | +processed_data = elfi.Summary(lambda data: data, elfi_simulator) |
| 40 | +distance = elfi.Distance('euclidean', processed_data) |
| 41 | +log_distance = elfi.Operation(np.log, distance) |
| 42 | +bolfi = elfi.BOLFI( |
| 43 | + log_distance, initial_evidence=10, bounds={'t_+': t_plus_range}, seed=seed |
| 44 | +) |
| 45 | +for i in range(20): |
| 46 | + bolfi.fit(n_evidence=10 + i + 1, bar=True) |
| 47 | + #plt.plot(t_plus, bolfi.target_model.predict(t_plus, noiseless=True)[0]) |
| 48 | + #plt.show() |
| 49 | +""" |
| 50 | + |
| 51 | +t_plus_range = [0.36, 0.44] |
| 52 | +t_plus = np.linspace(*t_plus_range, 200) |
| 53 | + |
| 54 | + |
| 55 | +def model(t_plus): |
| 56 | + return t_plus**2 |
| 57 | + |
| 58 | + |
| 59 | +x_range = [0.358, 0.442] |
| 60 | +t_plus_eval = np.linspace(*x_range, 200) |
| 61 | +y_range = [-0.012, 0.052] |
| 62 | +canvas = np.meshgrid(np.linspace(*x_range, 200), |
| 63 | + np.linspace(*reversed(y_range), 200)) |
| 64 | +t_plus_samples = t_plus_range.copy() |
| 65 | + |
| 66 | +fit_spline = [] |
| 67 | +fit_spline_uncertainty = [] |
| 68 | +fit_acq = [] |
| 69 | +fit_discrepancy = [] |
| 70 | +fit_acq_t_plus = [] |
| 71 | + |
| 72 | +prior = elfi.Prior('norm', 0.4, 0.02, name='t_+') |
| 73 | +elfi_simulator = elfi.Simulator( |
| 74 | + lambda *args, **_: model(args[0]) + 0.001 * ss.norm().rvs(size=1)[0], |
| 75 | + prior, observed=model(0.415) |
| 76 | +) |
| 77 | +processed_data = elfi.Summary(lambda data: data, elfi_simulator) |
| 78 | +distance = elfi.Distance('euclidean', processed_data) |
| 79 | +# log_distance = elfi.Operation(np.log, distance) |
| 80 | + |
| 81 | + |
| 82 | +class Animate_GP: |
| 83 | + def __init__(self, fig, ax, initial_evidence=0, frames=None): |
| 84 | + self.bolfi = elfi.BOLFI( |
| 85 | + distance, |
| 86 | + initial_evidence=initial_evidence, |
| 87 | + bounds={'t_+': t_plus_range}, |
| 88 | + seed=seed, |
| 89 | + batch_size=10, |
| 90 | + ) |
| 91 | + self.ax = ax |
| 92 | + self.ax.set_xlim(*x_range) |
| 93 | + self.ax.set_ylim(*y_range) |
| 94 | + self.ax.xaxis.set_ticks([]) |
| 95 | + self.ax.yaxis.set_ticks([]) |
| 96 | + self.ax.set_xlabel("model parameter") |
| 97 | + self.ax.set_ylabel("discrepancy") |
| 98 | + self.initial_evidence = initial_evidence |
| 99 | + self.line, = self.ax.plot([], []) |
| 100 | + self.acq, = self.ax.plot([], []) |
| 101 | + self.img = self.ax.imshow( |
| 102 | + 0 * canvas[0], |
| 103 | + cmap='gist_yarg', |
| 104 | + vmin=0, |
| 105 | + vmax=1, |
| 106 | + aspect='auto', |
| 107 | + extent=[*x_range, *y_range] |
| 108 | + ) |
| 109 | + self.pts, = self.ax.plot( |
| 110 | + [], [], lw=0, marker='o', |
| 111 | + color=plt.rcParams['axes.prop_cycle'].by_key()['color'][0] |
| 112 | + ) |
| 113 | + trans = matplotlib.transforms.ScaledTranslation( |
| 114 | + 240/72, -10/72, fig.dpi_scale_trans |
| 115 | + ) |
| 116 | + self.txt = self.ax.text( |
| 117 | + 0.0, 1.0, str(self.initial_evidence) + " samples ", |
| 118 | + transform=ax.transAxes + trans, verticalalignment='top' |
| 119 | + ) |
| 120 | + self.frames = frames |
| 121 | + |
| 122 | + def __call__(self, i): |
| 123 | + if self.frames is not None: |
| 124 | + n_evidence = self.initial_evidence + self.frames[i] |
| 125 | + else: |
| 126 | + n_evidence = self.initial_evidence + i |
| 127 | + self.bolfi.fit(n_evidence=n_evidence) |
| 128 | + mean, var = self.bolfi.target_model.predict( |
| 129 | + t_plus_eval, noiseless=True |
| 130 | + ) |
| 131 | + self.line.set_data(t_plus_eval, mean) |
| 132 | + eta_squared = 2 * np.log( |
| 133 | + n_evidence**4 * np.pi**2 / 0.3 |
| 134 | + ) |
| 135 | + self.acq.set_data(t_plus_eval, mean - np.sqrt(eta_squared * var)) |
| 136 | + unc = ( |
| 137 | + np.exp(-(canvas[1] - mean.T)**2 / (2 * var.T)) |
| 138 | + / np.sqrt(2 * np.pi * var.T) |
| 139 | + ) |
| 140 | + self.ax.imshow( |
| 141 | + unc, |
| 142 | + cmap='gist_yarg', |
| 143 | + vmin=0, |
| 144 | + vmax=np.max(unc), |
| 145 | + aspect='auto', |
| 146 | + extent=[*x_range, *y_range] |
| 147 | + ) |
| 148 | + self.pts.set_data( |
| 149 | + self.bolfi.target_model._gp.X, self.bolfi.target_model._gp.Y |
| 150 | + ) |
| 151 | + self.txt.set_text(str(n_evidence) + " samples") |
| 152 | + return self.line, self.acq, self.img, self.pts, self.txt |
| 153 | + |
| 154 | + |
| 155 | +initial_evidence = 3 |
| 156 | +frames = np.array([3, 4, 13, 14]) - initial_evidence |
| 157 | + |
| 158 | +fig, ax = plt.subplots(figsize=(6, 4)) |
| 159 | +anim_gp = Animate_GP(fig, ax, initial_evidence=initial_evidence, frames=frames) |
| 160 | +anim = FuncAnimation( |
| 161 | + fig, anim_gp, frames=4, interval=200, blit=False, repeat=False |
| 162 | +) |
| 163 | + |
| 164 | +bolfi = elfi.BOLFI( |
| 165 | + distance, |
| 166 | + initial_evidence=initial_evidence, |
| 167 | + bounds={'t_+': t_plus_range}, |
| 168 | + seed=seed, |
| 169 | + batch_size=10, |
| 170 | +) |
| 171 | + |
| 172 | +likelihood_range = [0.405, 0.425] |
| 173 | +likelihood_eval = np.linspace(*likelihood_range, 200) |
| 174 | +gps_at_each_frame = [] |
| 175 | + |
| 176 | +fig_static, axes = plt.subplots(figsize=(6, 4), nrows=2, ncols=2) |
| 177 | + |
| 178 | +for i, ax in enumerate(axes.flatten()): |
| 179 | + ax.xaxis.set_ticks([]) |
| 180 | + ax.yaxis.set_ticks([]) |
| 181 | + ax.set_xlim(*x_range) |
| 182 | + ax.set_ylim(*y_range) |
| 183 | + if frames is not None: |
| 184 | + n_evidence = initial_evidence + frames[i] |
| 185 | + else: |
| 186 | + n_evidence = initial_evidence + i |
| 187 | + bolfi.fit(n_evidence=n_evidence) |
| 188 | + trans = matplotlib.transforms.ScaledTranslation( |
| 189 | + 126/72, -5/72, fig.dpi_scale_trans |
| 190 | + ) |
| 191 | + mean, var = bolfi.target_model.predict(t_plus_eval, noiseless=True) |
| 192 | + gps_at_each_frame.append( |
| 193 | + bolfi.target_model.predict(likelihood_eval, noiseless=True) |
| 194 | + ) |
| 195 | + ax.plot(t_plus_eval, mean) |
| 196 | + eta_squared = 2 * np.log( |
| 197 | + n_evidence**4 * np.pi**2 / 0.3 |
| 198 | + ) |
| 199 | + ax.plot(t_plus_eval, mean - np.sqrt(eta_squared * var)) |
| 200 | + unc = ( |
| 201 | + np.exp(-(canvas[1] - mean.T)**2 / (2 * var.T)) |
| 202 | + / np.sqrt(2 * np.pi * var.T) |
| 203 | + ) |
| 204 | + ax.imshow( |
| 205 | + unc, |
| 206 | + cmap='gist_yarg', |
| 207 | + vmin=0, |
| 208 | + vmax=np.max(unc), |
| 209 | + aspect='auto', |
| 210 | + extent=[*x_range, *y_range] |
| 211 | + ) |
| 212 | + ax.scatter( |
| 213 | + bolfi.target_model._gp.X, bolfi.target_model._gp.Y |
| 214 | + ) |
| 215 | + ax.text( |
| 216 | + 0.0, 1.0, str(n_evidence) + " samples ", |
| 217 | + transform=ax.transAxes + trans, |
| 218 | + verticalalignment='top', horizontalalignment='right' |
| 219 | + ) |
| 220 | +fig_static.supxlabel(r"Model parameter $\theta$") |
| 221 | +fig_static.supylabel("Model-data distance") |
| 222 | +fig_static.tight_layout() |
| 223 | + |
| 224 | +posterior = bolfi.extract_posterior() |
| 225 | +threshold = posterior.threshold |
| 226 | +likelihood_yrange = [-0.0012, 0.0082] |
| 227 | +likelihood_canvas = np.meshgrid( |
| 228 | + np.linspace(*likelihood_range, 200), |
| 229 | + np.linspace(*reversed(likelihood_yrange), 200) |
| 230 | +) |
| 231 | +mean, var = bolfi.target_model.predict(likelihood_eval, noiseless=True) |
| 232 | +likelihood = ss.norm().cdf((threshold - mean) / np.sqrt(var)) |
| 233 | +normalizing = np.sum( |
| 234 | + 0.5 |
| 235 | + * (likelihood[:-1] + likelihood[1:]) |
| 236 | + * (t_plus_eval[1:] - t_plus_eval[:-1]) |
| 237 | +) |
| 238 | + |
| 239 | +fig_int, (ax_gp, ax_int) = plt.subplots(figsize=(6, 4), nrows=2) |
| 240 | +ax_gp.set_xlim(*likelihood_range) |
| 241 | +ax_int.set_xlim(*likelihood_range) |
| 242 | +ax_gp.xaxis.set_ticks([]) |
| 243 | +ax_int.xaxis.set_ticks([]) |
| 244 | +ax_gp.yaxis.set_ticks([]) |
| 245 | +ax_int.yaxis.set_ticks([]) |
| 246 | +ax_gp.set_ylabel(r"$\log||y_i(\theta)-y_i^\star||$") |
| 247 | +ax_int.set_ylabel(r"$L_K(\theta)$") |
| 248 | +ax_int.set_xlabel(r"Model parameter $\theta$") |
| 249 | +trans_int = matplotlib.transforms.ScaledTranslation( |
| 250 | + 10/72, -5/72, fig_int.dpi_scale_trans |
| 251 | +) |
| 252 | +ax_gp.text(0.0, 1.0, '(a)', transform=ax_gp.transAxes + trans_int, |
| 253 | + verticalalignment='top', fontsize=20) |
| 254 | +ax_int.text(0.0, 1.0, '(b)', transform=ax_int.transAxes + trans_int, |
| 255 | + verticalalignment='top', fontsize=20) |
| 256 | +trans_samples = matplotlib.transforms.ScaledTranslation( |
| 257 | + 162/72, -10/72, fig.dpi_scale_trans |
| 258 | +) |
| 259 | +ax_gp.text( |
| 260 | + 0.0, 1.0, str(n_evidence) + " samples ", |
| 261 | + transform=ax_gp.transAxes + trans_samples, verticalalignment='top' |
| 262 | +) |
| 263 | +ax_gp.plot(likelihood_eval, mean) |
| 264 | +ax_gp.plot(likelihood_eval, mean - np.sqrt(eta_squared * var)) |
| 265 | +ax_gp.plot(likelihood_eval, [threshold] * len(likelihood_eval)) |
| 266 | +ax_gp.scatter( |
| 267 | + bolfi.target_model._gp.X, bolfi.target_model._gp.Y |
| 268 | +) |
| 269 | +truncated_unc = ( |
| 270 | + np.exp(-(likelihood_canvas[1] - mean.T)**2 / (2 * var.T)) |
| 271 | + / np.sqrt(2 * np.pi * var.T) |
| 272 | +) / normalizing * (likelihood_canvas[1] < threshold) |
| 273 | +ax_gp.imshow( |
| 274 | + truncated_unc, |
| 275 | + cmap='gist_yarg', |
| 276 | + vmin=0, |
| 277 | + vmax=np.max(truncated_unc), |
| 278 | + aspect='auto', |
| 279 | + extent=[*likelihood_range, *likelihood_yrange] |
| 280 | +) |
| 281 | +ax_int.plot( |
| 282 | + likelihood_eval, |
| 283 | + likelihood / normalizing, |
| 284 | + color=plt.rcParams['axes.prop_cycle'].by_key()['color'][4] |
| 285 | +) |
| 286 | + |
| 287 | +fig_int.tight_layout() |
| 288 | + |
| 289 | +eps_min = -0.005 |
| 290 | +eps_max = 0.04 |
| 291 | +threshold_eval = np.linspace(eps_min, eps_max, 200) |
| 292 | +norm = matplotlib.colors.Normalize(eps_min, eps_max) |
| 293 | +cmap = plt.get_cmap('viridis') |
| 294 | +fig_eps, ax_eps = plt.subplots( |
| 295 | + figsize=(4 * 2**0.5, 4), constrained_layout=True) |
| 296 | +# mean, var = gps_at_each_frame[2] |
| 297 | +for eps in threshold_eval: |
| 298 | + likelihood_eps = ss.norm().cdf((eps - mean) / np.sqrt(var)) |
| 299 | + normalizing_eps = np.sum( |
| 300 | + 0.5 |
| 301 | + * (likelihood_eps[:-1] + likelihood_eps[1:]) |
| 302 | + * (t_plus_eval[1:] - t_plus_eval[:-1]) |
| 303 | + ) |
| 304 | + ax_eps.plot( |
| 305 | + likelihood_eval, |
| 306 | + likelihood_eps / normalizing_eps, |
| 307 | + color=cmap(norm(eps)) |
| 308 | + ) |
| 309 | +ax_eps.set_title("Normalized Likelihoods") |
| 310 | +fig_eps.colorbar(matplotlib.cm.ScalarMappable( |
| 311 | + norm=norm, cmap=cmap |
| 312 | +), ax=ax_eps, label="threshold") |
| 313 | + |
| 314 | +plt.show() |
0 commit comments