diff --git a/lib/scholar/naive_bayes/complement.ex b/lib/scholar/naive_bayes/complement.ex index a9f7e759..fcdcc633 100644 --- a/lib/scholar/naive_bayes/complement.ex +++ b/lib/scholar/naive_bayes/complement.ex @@ -352,36 +352,7 @@ defmodule Scholar.NaiveBayes.Complement do do: Nx.reshape(sample_weights, {num_samples, 1}) * y_one_hot, else: y_one_hot - # classes = - # y - # |> Scholar.Preprocessing.ordinal_encode(num_classes: num_classes) - # |> Scholar.Preprocessing.one_hot_encode(num_classes: num_classes) - - # {_, classes_features} = classes_shape = Nx.shape(classes) - - # classes = - # cond do - # classes_features == 1 and num_classes == 2 -> - # Nx.concatenate([1 - classes, classes], axis: 1) - - # classes_features == 1 and num_classes != 2 -> - # Nx.broadcast(1.0, classes_shape) - - # true -> - # classes - # end - - # classes = - # if opts[:sample_weights_flag], - # do: classes * Nx.reshape(sample_weights, {:auto, 1}), - # else: classes - - # {_, n_classes} = Nx.shape(classes) - # class_count = Nx.broadcast(Nx.tensor(0.0, type: x_type), {n_classes}) - # class_count = class_count + Nx.sum(classes, axes: [0]) class_count = Nx.sum(y_weighted, axes: [0]) - # feature_count = Nx.broadcast(Nx.tensor(0.0, type: x_type), {n_classes, num_features}) - # feature_count = feature_count + Nx.dot(classes, [0], x, [0]) feature_count = Nx.dot(y_weighted, [0], x, [0]) feature_all = Nx.sum(feature_count, axes: [0]) alpha = check_alpha(alpha, opts[:force_alpha], num_features)