-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstargan.py
374 lines (295 loc) · 13.5 KB
/
stargan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import itertools
import random
from datetime import datetime
from pathlib import Path
from typing import List
import torch.backends.cudnn as cudnn
import torch.utils.data
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import Dataset
from torchvision.utils import save_image
from tqdm import tqdm
from models import Cyclegan_Generator,Cyclegan_Discriminator
from torch.optim.lr_scheduler import StepLR
from sys import argv
from collections import deque
cudnn.benchmark = True
random.seed(100)
torch.manual_seed(100)
if torch.cuda.is_available():
print("Using GPU.")
device = torch.device('cuda:0')
else:
print("Using CPU.")
device = torch.device("cpu")
gan_alpha = 1
cycle_alpha = 10
identity_alpha = 1
domain_alpha_gen = 1
domain_alpha_disc = 1
image_size = 256
batch_size = 4
epochs = 25
lr = 0.0002
betas = (0.5, 0.999)
max_pools_size = 1000
save_after_how_many=5
save_image_after_how_many_iter=500
lr_decay_start=10
lr_decay_step=1
lr_gama=0.8
resize_to=300
random_crop=256
min_plus_resize=10
max_plus_resize=100
use_cross_entropy=True
photo_domain = "photo"
painter_domains = ["monet30", "cezanne", "ukiyoe", "vangogh"]
all_domains = [photo_domain] + painter_domains
number_of_domains = len(all_domains
)
#for transfer learning only:
#bias: train only bias | one:train only the last layer | mul: train last 3 layers of generator and last 2 layers of discriminator
#mulplus: train last 5 layers of generator and last 2 layers of discriminator #False- dont freeze
#mulsizes: train last 3 layers of generator and first 3 layers and last 2 layers of discriminator #False- dont freeze
freeze = False
# set to True to not freeze the bias layers
keep_bias=False
generator_class=Cyclegan_Generator
discriminator_class = Cyclegan_Discriminator
transformers={}
for i in range(min_plus_resize,max_plus_resize):
transformers[i]= transforms.Compose([
transforms.Resize(256+i, Image.BICUBIC),
transforms.RandomCrop(256),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
datasets_folder = Path('data')
output_folder = Path('results/')
Fake_Y = torch.full((batch_size, 1), 0, device=device, dtype=torch.float32)
domain_generator_tensors = {}
for ind_domain, domain_name in enumerate(all_domains):
tensor = torch.zeros((batch_size, len(all_domains), 256, 256))
tensor[:, ind_domain] = 1
domain_generator_tensors[domain_name] = tensor.to(device, dtype=torch.float)
shape_in_discriminator = []
def one_hot(batch_size,num, index):
a = torch.zeros(batch_size,num)
for i in range(batch_size):
a[i][index] = 1
return a
domain_discriminator_tensors = {}
for ind_domain, domain_name in enumerate(all_domains):
if use_cross_entropy:
tensor = torch.full((batch_size, *shape_in_discriminator), ind_domain)
else:
tensor=one_hot(batch_size,number_of_domains,ind_domain)
domain_discriminator_tensors[domain_name] = tensor.to(device)
def init_net_func(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
torch.nn.init.normal_(m.weight, 1.0, 0.02)
torch.nn.init.zeros_(m.bias)
def save_networks(networks_dict, networks_output_folder, checkpoint_name):
for net_name, net in networks_dict.items():
torch.save(net.state_dict(), f"{networks_output_folder}/{checkpoint_name}_{net_name}.pth")
def load_networks(networks_dict, networks_folder,epoch):
for net_name, net in networks_dict.items():
net.load_state_dict(torch.load(f"{networks_folder}/{epoch}_{net_name}.pth"))
def net_results_to_images(*net_images):
return (0.5 * (image.detach() + 1.0) for image in net_images)
def to_device(*tensors):
return (tensor.to(device) for tensor in tensors)
class CycleGanDataset(Dataset):
def __init__(self, path_to_all: Path, master_domain: str, other_domains: List[str]):
self.master_domain = master_domain
self.other_domains = other_domains
self.images_by_domains = {}
for domain in self.other_domains + [self.master_domain]:
self.images_by_domains[domain] = [Image.open(x).convert('RGB') for x in (path_to_all/domain).iterdir()]
self.master_size = len(self.images_by_domains[self.master_domain])
self.number_of_other_domains = len(self.other_domains)
self.ind = 0
def __getitem__(self, index):
image_in_batch = self.ind % batch_size
general_batch_number = self.ind // batch_size
per_class_batch_number = general_batch_number // self.number_of_other_domains
current_class_index = general_batch_number % self.number_of_other_domains
slave_image_index = per_class_batch_number * batch_size + image_in_batch
transform = transformers[random.randrange(min_plus_resize, max_plus_resize)]
domain_a = self.other_domains[current_class_index]
slave_images = self.images_by_domains[domain_a]
a_image = transform(slave_images[slave_image_index % len(slave_images)])
domain_b = self.master_domain
master_images = self.images_by_domains[domain_b]
b_image = transform(master_images[self.ind % len(master_images)])
self.ind += 1
return a_image, b_image, domain_a, domain_b
def __len__(self):
return self.master_size
class Image_pool(object):
def __init__(self, pool_size,device):
self.pool = deque(maxlen=pool_size)
self.device=device
def size(self):
return len(self.pool)
def push_and_sample(self,images):
images=images.detach().cpu()
batch_size=len(images)
for i in range(batch_size):
self.pool.append(images[i])
ans=random.sample(self.pool, batch_size)
return torch.stack(ans).to(device)
def get_dataloader():
dataset = CycleGanDataset(datasets_folder, photo_domain, painter_domains)
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, pin_memory=False,drop_last=True)
def freeze_model(model,freeze,keep_bias):
if freeze!="bias" and freeze!="bottom":
keep=["last_conv.weight","conv5.weight","last_conv.bias","conv5.bias"]
else:
keep=[]
add=[]
add2=[]
if freeze=="mul" or freeze=="mulplus" or freeze=="mulsizes":
add=["conv4.weight","conv4.bias","up1.weight","up2.weight","up1.bias","up2.bias"]
if freeze=="mulplus":
add2=["res_layers.8.conv1.bias","res_layers.8.conv1.weight","res_layers.7.conv1.bias","res_layers.7.conv1.weight"]
if (freeze=="mulsizes" and model.__class__.__name__=="Cyclegan_Generator") or freeze=="bottom":
add = ["conv1.weight", "conv1.bias", "down1.weight", "down2.weight", "down1.bias", "down2.bias"]
keep=keep+add+add2
size = 0
for name, param in model.named_parameters():
if name in keep or (keep_bias and "bias" in name):
param.requires_grad = True
print(name, param.size())
else:
param.requires_grad = False
generator = generator_class(input_nc=3+number_of_domains).to(device)
discriminator = discriminator_class(output_nc=1+number_of_domains).to(device)
networks = {'generator': generator, 'discriminator': discriminator}
if len(argv)>2:
load_networks(networks, "results/"+argv[2]+"/networks/", 25)
print("loaded previous models")
if(freeze!=False):
freeze_model(networks['generator'], "bottom", keep_bias)
freeze_model(networks['generator'], "mul", keep_bias)
freeze_model(networks['discriminator'], "mul", keep_bias)
#for key in networks:
#freeze_model(networks[key],freeze,keep_bias)
else:
[network.apply(init_net_func) for network in networks.values()]
l1_loss = torch.nn.L1Loss().to(device)
mse_loss = torch.nn.MSELoss().to(device)
cross_entropy = torch.nn.CrossEntropyLoss().to(device)
bce_loss=torch.nn.BCELoss().to(device)
gan_loss_func = mse_loss
if use_cross_entropy:
domain_loss_func=cross_entropy
else:
domain_loss_func=mse_loss
generator_optimizer = torch.optim.Adam(generator.parameters(), lr=lr, betas=betas)
discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=betas)
fake_pools = {}
for ind_domain, domain_name in enumerate(all_domains):
fake_pools[domain_name] = Image_pool(max_pools_size, device)
def get_image_from_fake_pool(pool: list, new_fake_image):
pool.append(new_fake_image.detach().cpu())
chosen_ind = random.randint(0, len(pool)-1)
if len(pool) < max_pools_size:
chosen_image = pool[chosen_ind]
else:
chosen_image = pool.pop(chosen_ind)
return chosen_image.to(device)
def train_generators_by_src(domain_src, domain_dest, real_image):
generator_optimizer.zero_grad()
if identity_alpha>0:
real_image_domain_src = torch.cat((real_image, domain_generator_tensors[domain_src]), 1)
identity_image = generator(real_image_domain_src)
loss_identity = l1_loss(identity_image, real_image) * identity_alpha
else:
loss_identity=0
real_image_domain_dest = torch.cat((real_image, domain_generator_tensors[domain_dest]), 1)
fake_image = generator(real_image_domain_dest)
output = discriminator(fake_image)
validity, domain = output[:, 0:1], output[:, 1:]
loss_gan = gan_loss_func(validity, Real_Y) * gan_alpha
#domain_target=domain_discriminator_tensors[domain_dest]
loss_domain = domain_loss_func(domain, domain_discriminator_tensors[domain_dest])
fake_image_domain_src = torch.cat((fake_image, domain_generator_tensors[domain_src]), 1)
recovered_image = generator(fake_image_domain_src)
loss_cycle = l1_loss(recovered_image, real_image) * cycle_alpha
generator_loss = loss_gan + loss_cycle + loss_identity + loss_domain * domain_alpha_gen
generator_loss.backward()
generator_optimizer.step()
return fake_image, recovered_image, generator_loss.item()
def train_discriminator(dest_domain, fake_image, real_image):
discriminator_optimizer.zero_grad()
output = discriminator(real_image)
validity, domain = output[:, 0:1], output[:, 1:]
loss_real = gan_loss_func(validity, Real_Y)
loss_domain = domain_loss_func(domain, domain_discriminator_tensors[dest_domain])
output = discriminator(fake_image)
validity, domain = output[:, 0:1], output[:, 1:]
loss_fake = gan_loss_func(validity, Fake_Y)
real_and_fake_loss = (loss_real + loss_fake) / 2 + loss_domain * domain_alpha_disc
real_and_fake_loss.backward()
discriminator_optimizer.step()
return real_and_fake_loss.item()
def single_train_cycle(real_image_a, real_image_b, domain_a, domain_b):
real_image_a, real_image_b =to_device(real_image_a, real_image_b)
fake_image_b, recovered_image_a, gen_loss1 = train_generators_by_src(domain_a, domain_b, real_image_a)
fake_image_a, recovered_image_b, gen_loss2 = train_generators_by_src(domain_b, domain_a, real_image_b)
fake_image_a_for_d =fake_pools[domain_a].push_and_sample(fake_image_a)
disc_loss1=train_discriminator(domain_a, fake_image_a_for_d, real_image_a)
fake_image_b_for_d =fake_pools[domain_b].push_and_sample(fake_image_b)
disc_loss2=train_discriminator(domain_b, fake_image_b_for_d, real_image_b)
fake_image_a, fake_image_b = net_results_to_images(fake_image_a, fake_image_b)
recovered_image_a, recovered_image_b = net_results_to_images(recovered_image_a, recovered_image_b)
gen_loss=(gen_loss1+gen_loss2)/2
disc_loss=(disc_loss1+disc_loss2)/2
return {
'a_real': real_image_a, 'a_fake': fake_image_b, 'a_rec': recovered_image_a,
'b_real': real_image_b, 'b_fake': fake_image_a, 'b_rec': recovered_image_b,
},gen_loss,disc_loss
def train_loop():
if len(argv)>1:
network_name=argv[1]
else:
network_name=datetime.now().strftime("%d-%m-%Y__%H-%M-%S")
train_folder_path = output_folder / network_name
images_output_folder = train_folder_path / 'images'
networks_output_folder = train_folder_path / 'networks'
images_output_folder.mkdir(parents=True, exist_ok=True)
networks_output_folder.mkdir(parents=True, exist_ok=True)
print_freq = 10
dataloader = get_dataloader()
scheduler1 = StepLR(generator_optimizer, step_size=lr_decay_step, gamma=lr_gama)
scheduler2 = StepLR(discriminator_optimizer, step_size=lr_decay_step, gamma=lr_gama)
for epoch in range(1,epochs+1):
progress_bar = tqdm(enumerate(dataloader), total=len(dataloader))
total_gen_loss=0
total_disc_loss=0
iters=0
for i, (image_a, image_b, domain_a_batch, domain_b_batch) in progress_bar:
results_dict,gen_loss,disc_loss = single_train_cycle(image_a, image_b, domain_a_batch[0], domain_b_batch[0])
total_gen_loss+=gen_loss
total_disc_loss+=disc_loss
iters+=1
if iters % save_image_after_how_many_iter==0:
for name, image in results_dict.items():
save_image(image, f"{images_output_folder}/{epoch}_{iters}_{name}.png", normalize=True)
for name, image in results_dict.items():
save_image(image, f"{images_output_folder}/{epoch}_final_{name}.png", normalize=True)
print(f"epoch {epoch} gen loss: {total_gen_loss/iters} disc_loss: {total_disc_loss/iters}")
if epoch % save_after_how_many==0:
save_networks(networks, networks_output_folder, f'{epoch}')
if epoch >= lr_decay_start:
scheduler1.step()
scheduler2.step()
save_networks(networks, networks_output_folder, 'last')
train_loop()