-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
269 lines (227 loc) · 9.95 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import pandas as pd
import matplotlib.pyplot as plt
import argparse
import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.ticker as ticker
from matplotlib import rc
# Use LaTeX for text rendering
rc("text", usetex=True)
# Set Seaborn aesthetic parameters to defaults
sns.set()
parser = argparse.ArgumentParser(description='Process CSV file path.')
parser.add_argument('csv_path', type=str, help='Path to the CSV file')
args = parser.parse_args()
# Read the data
df = pd.read_csv(args.csv_path)
df = df.sort_values('Algorithm')
alg_repls = {
"Hedge-Hedge": "Hedge-Hedge (NRNR)", "OGD-OGD": "OptHedge-OptHedge (NRNR)", "OGD": "OptHedge-ERM (NRBR)", "Hedge": "Hedge-ERM (NRBR)", "Prod": "Prod-ERM (NRBR)", "GD": "GD-ERM (NRBR)"}
df["Algorithm"] = df["Algorithm"].replace(alg_repls)
# Assuming df is your DataFrame
# Group by Algorithm, Learning Rate, Dataset, and Iterations
grouped_train = df.groupby(["Algorithm", "Learning Rate", "Dataset", "Iterations"])
grouped_test = df.groupby(["Algorithm", "Learning Rate", "Dataset", "Iterations"])
grouped_val = df.groupby(["Algorithm", "Learning Rate", "Dataset", "Iterations"])
grouped_avg_test = df.groupby(["Algorithm", "Learning Rate", "Dataset", "Iterations"])
print(df.isnull().values.any())
# Compute mean and standard deviation of Training Calibration Error
summary_train = grouped_train["Training Calibration Error"].agg(["mean", "sem", "count"])
# Compute mean and standard deviation of Testing Calibration Error
summary_test = grouped_test["Testing Calibration Error"].agg(["mean", "sem", "count"])
# Compute mean and standard deviation of Testing Calibration Error
summary_val = grouped_test["Validation Calibration Error"].agg(["mean", "sem", "count"])
# Compute mean and standard deviation of Testing Calibration Error
summary_avg_test = grouped_avg_test["Testing Calibration Error (Ergodic)"].agg(["mean", "sem", "count"])
# Reset the index for the next steps
summary_train.reset_index(inplace=True)
summary_test.reset_index(inplace=True)
summary_val.reset_index(inplace=True)
summary_avg_test.reset_index(inplace=True)
# Initialize an empty DataFrame to hold the final results
final_summary = pd.DataFrame()
# Loop over each Algorithm and Dataset
for algorithm in df["Algorithm"].unique():
for dataset in df["Dataset"].unique():
# Subset the data for this Algorithm and Dataset
subset_train = summary_train[
(summary_train["Algorithm"] == algorithm)
& (summary_train["Dataset"] == dataset)
]
subset_val = summary_val[
(summary_val["Algorithm"] == algorithm)
& (summary_val["Dataset"] == dataset)
]
subset_test = summary_test[
(summary_test["Algorithm"] == algorithm)
& (summary_test["Dataset"] == dataset)
]
subset_avg_test = summary_avg_test[
(summary_avg_test["Algorithm"] == algorithm)
& (summary_avg_test["Dataset"] == dataset)
]
if algorithm == "Prod-Prod":
print(subset_train.isnull().any())
print(subset_train[subset_train.isnull().any(axis=1)])
# Find the Learning Rate that yields the minimum mean Training Calibration Error
last_iteration_val = subset_val.groupby(["Learning Rate"])[
"Iterations"
].max()
last_iteration_summary_val = subset_val[
subset_val["Iterations"].isin(last_iteration_val)
]
idx_val = last_iteration_summary_val["mean"].idxmin()
best_lr_summary_val = last_iteration_summary_val.loc[[idx_val]]
# Find the last iteration for each Learning Rate
last_iteration_train = subset_train.groupby(["Learning Rate"])[
"Iterations"
].max()
last_iteration_summary_train = subset_train[
subset_train["Iterations"].isin(last_iteration_train)
]
best_lr_summary_train = last_iteration_summary_train[
last_iteration_summary_train["Learning Rate"].isin(
best_lr_summary_val["Learning Rate"]
)
]
# Find the corresponding Testing Calibration Error
last_iteration_test = subset_test.groupby(["Learning Rate"])["Iterations"].max()
last_iteration_summary_test = subset_test[
subset_test["Iterations"].isin(last_iteration_test)
]
best_lr_summary_test = last_iteration_summary_test[
last_iteration_summary_test["Learning Rate"].isin(
best_lr_summary_val["Learning Rate"]
)
]
# Find the corresponding Avg Testing Calibration Error
last_iteration_avg_test = subset_avg_test.groupby(["Learning Rate"])["Iterations"].max()
last_iteration_summary_avg_test = subset_avg_test[
subset_test["Iterations"].isin(last_iteration_avg_test)
]
best_lr_summary_avg_test = last_iteration_summary_avg_test[
last_iteration_summary_avg_test["Learning Rate"].isin(
best_lr_summary_val["Learning Rate"]
)
]
# Merge the Training and Testing summaries
best_lr_summary = pd.merge(
pd.merge(
best_lr_summary_train,
best_lr_summary_test,
on=["Algorithm", "Learning Rate", "Dataset", "Iterations"],
suffixes=("_train", "_test"),
),
best_lr_summary_avg_test,
on=["Algorithm", "Learning Rate", "Dataset", "Iterations"],
suffixes=("", "_avg_test"),
)
best_lr_summary = best_lr_summary.rename(
columns={"mean": "mean_avg_test", "sem": "sem_avg_test", "count": "count_avg_test"}
)
# Append this to the final summary
final_summary = final_summary.append(best_lr_summary, ignore_index=True)
# Convert the mean and standard deviation columns to the "... ± ..." format
# Add count information to the final summary
final_summary["Training Calibration Error"] = final_summary.apply(
lambda row: f"{row['mean_train']:.3f} $\pm$ {row['sem_train']:.3f} (n={row['count_train']})", axis=1
)
final_summary["Testing Calibration Error"] = final_summary.apply(
lambda row: f"{row['mean_test']:.3f} $\pm$ {row['sem_test']:.3f} (n={row['count_test']})", axis=1
)
final_summary["Testing Calibration Error (Ergodic)"] = final_summary.apply(
lambda row: f"{row['mean_avg_test']:.6f} $\pm$ {row['sem_avg_test']:.6f} (n={row['count_avg_test']})", axis=1
)
# Drop the original mean, sem and count columns
final_summary.drop(
columns=["mean_train", "sem_train", "count_train",
"mean_test", "sem_test", "count_test",
"mean_avg_test", "sem_avg_test", "count_avg_test"], inplace=True
)
# Reorder the columns
final_summary = final_summary[
[
"Algorithm",
"Dataset",
"Learning Rate",
"Training Calibration Error",
"Testing Calibration Error",
"Testing Calibration Error (Ergodic)",
]
]
# Convert the DataFrame to
latex_table = final_summary.to_latex(index=False, escape=False)
print(latex_table)
# Updaet font
mpl.rcParams.update({
'font.size': 12,
'font.family': 'serif',
'text.usetex': True
})
# Get unique values
algorithms = df["Algorithm"].unique()
datasets = df["Dataset"].unique()
learning_rates = df["Learning Rate"].unique()
# Styles for different learning rates
styles = ["-", "--", ":", "-."]
# Set color palette
palette = sns.color_palette("husl", len(algorithms))
for dataset in datasets:
# Create a figure for each dataset
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 4))
for idx, algorithm in enumerate(algorithms):
if algorithm == "Prod-Prod":
continue # skip this algorithm
# Get the best learning rate for this algorithm and dataset
best_lr_for_algorithm_and_dataset = final_summary[
(final_summary["Algorithm"] == algorithm)
& (final_summary["Dataset"] == dataset)
]["Learning Rate"].values[0]
# Subset data for this algorithm and best learning rate
subset = df[
(df["Algorithm"] == algorithm)
& (df["Learning Rate"] == best_lr_for_algorithm_and_dataset)
& (df["Dataset"] == dataset)
]
counts = subset["Iterations"].value_counts()
if "OGD" in algorithm:
algorithm = algorithm.replace("OGD", "OptHedge")
# Plot Training Calibration Error
sns.lineplot(
x="Iterations",
y="Training Calibration Error",
data=subset,
ax=ax[0],
label=f"{algorithm}", # $\\eta=$ {best_lr_for_algorithm_and_dataset}",
color=palette[idx],
linestyle=styles[idx % len(styles)], # use different line style for each algorithm
errorbar='se' # use standard deviation for the error bars
)
# Plot Testing Calibration Error
lineplot_test = sns.lineplot(
x="Iterations",
y="Testing Calibration Error",
data=subset,
ax=ax[1],
label=f"{algorithm}", # $\\eta=$ {best_lr_for_algorithm_and_dataset}",
color=palette[idx],
linestyle=styles[idx % len(styles)], # use different line style for each algorithm
errorbar='se' # use standard deviation for the error bars
)
if dataset == "AdultIncome":
dataset = "Adult Income"
# Set the titles and labels
fig.suptitle(f"Multicalibration Errors On {dataset} Dataset", fontsize=16)
ax[0].set_ylabel("Training Calibration Error", fontsize=14)
ax[1].set_ylabel("Testing Calibration Error", fontsize=14)
for a in ax:
a.set_xlabel("Iterations", fontsize=14)
a.set_yscale("log") # apply log scale to y-axis
a.legend()
a.yaxis.set_major_locator(ticker.LogLocator(numticks=10)) # Set the number of ticks (e.g., 10)
a.yaxis.set_major_formatter(ticker.ScalarFormatter())
# Show the plot
plt.tight_layout()
# Save the plot
fig.savefig(f"{dataset}_calibration_error.png", dpi=300)