-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnloop_exact.py
540 lines (465 loc) · 22.3 KB
/
nloop_exact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
from snappy import *
from random import randrange
from collections import OrderedDict
import multiprocessing
class NeumannZagierDatum():
"""
description of class, comment entire class
"""
def __init__(self, manifold, engine=None, verbose=False, file_name=None):
self.manifold = manifold
self.engine = engine
self.verbose = verbose
self.file_name = file_name
self._raw_gluing_equations = manifold.gluing_equations()
self.num_shapes = self._raw_gluing_equations.ncols() // 3
self.num_eqns = self._raw_gluing_equations.nrows()
self._eliminated_shapes = self.num_shapes * [1, ]
self.computed_ptolemy = False
self.nz = None
pari.set_real_precision(100)
def all_shape_parameters(self, z):
return [z, 1 / (1 - z), 1 - 1 / z]
def in_threes(self, L):
return [L[3 * i : 3 * (i + 1)] for i in range(len(L) // 3)]
def shift_in_threes(self, L, shifts):
return sum([X[s:] + X[:s] for X, s in zip(self.in_threes(L),\
shifts)], [])
def is_geom(self, M, c):
vol = M.volume()
for v in c.volume_numerical():
if abs(v - vol) < 1e-10:
return True
return False
def gluing_equations(self):
eqns = self._raw_gluing_equations
new_cols = self.shift_in_threes(eqns.columns(), [(i - 1) % 3 for\
i in self._eliminated_shapes])
return matrix(new_cols).transpose()
def ABCbar(self):
eqns = self.gluing_equations()
n = self.num_shapes
return [eqns.matrix_from_columns(range(i, 3 * n, 3))\
for i in range(3)]
def target_vector(self):
"""
Answer times pi*i is right-hand side of
gluing equations.
"""
m = self.num_eqns
c = self.manifold.num_cusps()
return vector(ZZ, [2 for i in range(m - 2 * c)] + (2 * c) * [0])
def ABv(self):
A, B, C = self.ABCbar()
one = vector(B.base_ring(), B.ncols() * [1])
return A - B, C - B, self.target_vector() - B * one
def ABv_square(self):
A, B, v = self.ABv()
M = block_matrix([[B, A, v.column()]])
c = self.manifold.num_cusps()
rows = range(M.nrows())[:-2 * c]
rows += [2 * i + rows[-1] + 1 for i in range(c)]
M = M.matrix_from_rows(rows)
M = M.hermite_form(include_zero_rows=False)
n = A.ncols()
return M.matrix_from_columns(range(n, 2 * n)),\
M.matrix_from_columns(range(n)), M.columns()[-1]
def f_and_fddot(self):
A, B, v = self.ABv_square()
n = A.ncols()
M = block_matrix([[A, B]])
S, U, V = M.smith_form()
d = S.diagonal()
f = V * vector(ZZ, [x / y for x, y in zip(U * v, d)] + n * [0])
assert M * f == v
return vector(f[:n]), vector(f[n:])
def make_B_nondegenerate(self):
while det(self.ABv_square()[1]) == 0:
self._eliminated_shapes = [randrange(3) for\
i in range(self.num_shapes)]
def compute_ptolemy_field_and_embedding(self):
vol = self.manifold.volume()
p = self.manifold.ptolemy_variety(2, 'all')
if self.computed_ptolemy == False:
if self.engine == "retrieve":
try:
s = p.retrieve_solutions(verbose=self.verbose)\
.flatten(depth=2)
except:
s = p.compute_solutions(engine=self.engine,\
verbose=self.verbose).flatten(depth=2)
else:
s = p.compute_solutions(engine=self.engine,\
verbose=self.verbose).flatten(depth=2)
self.computed_ptolemy = s
else:
s = self.computed_ptolemy
for sol in s:
rsol = zip(pari('polroots(%s)' %sol.number_field()),\
sol.numerical())
for root, numerical_sol in rsol:
if abs(vol - numerical_sol.volume_numerical()) < 1e-10:
return root
def exact_shapes_via_ptolemy_lifted(self):
p = self.manifold.ptolemy_variety(2, 'all')
if self.computed_ptolemy == False:
if self.engine == "retrieve":
try:
s = p.retrieve_solutions(verbose=self.verbose)\
.flatten(depth=2)
except:
s = p.compute_solutions(engine=self.engine,\
verbose=self.verbose).flatten(depth=2)
else:
s = p.compute_solutions(engine=self.engine,\
verbose=self.verbose).flatten(depth=2)
self.computed_ptolemy = s
else:
s = self.computed_ptolemy
sol = [c for c in s if self.is_geom(self.manifold, c)][int(0)]
cr = sol.cross_ratios()
shapes = [cr['z_0000_%d' % i] for i in range(self.num_shapes)]
rot_shapes = [self.all_shape_parameters(z)[(i - 1) % 3]\
for z, i in zip(shapes, self._eliminated_shapes)]
lifted_shapes = [gp.lift(s) for s in rot_shapes]
return [sol.number_field(), lifted_shapes]
def generate_nz_data(self):
self.make_B_nondegenerate()
temp_ABv = self.ABv_square()
A = temp_ABv[0]
B = temp_ABv[1]
nu = temp_ABv[2]
temp_fs = self.f_and_fddot()
f = temp_fs[0]
f_ddot = temp_fs[1]
p, shapes = self.exact_shapes_via_ptolemy_lifted()
S = PolynomialRing(QQ, 'x')
K = NumberField(S(str(p)), 'y')
new_shapes = [K(str(s.lift()).replace('x', 'y'))\
for s in shapes]
pol = K.polynomial()
embedding = self.compute_ptolemy_field_and_embedding()
new_nz = (A, B, nu, f, f_ddot, pol, new_shapes, embedding)
self.nz = new_nz
if self.file_name != None:
save(new_nz, self.file_name)
class nloop():
"""
Compute the n-loop invariant S_n.
Reference: ``The Quantum Content of the Gluing Equations'' by
Dimofte and Garoufalidis.
"""
def __init__(self, nzdata, n, diagrams):
"""Initializes class variables."""
(A, B, nu, f, f_ddot, p, zees, _) = nzdata
self.A = A
self.B = B
self.nu = nu
self.f = f
self.f_ddot = f_ddot
self.p = p
self.zees = zees
self.n = n
self.diagrams = [g for g in diagrams if\
self.feynman_loop_number(g) <= self.n]
self.ver_factor = None
self.prev = OrderedDict()
def exponentiate_list(self, L, E):
return prod([l ** e for l, e in zip(L, E)])
def one_loop(self):
K = NumberField(self.p, 'y')
y = K.gen()
shapes_dd = [1 - 1 / z for z in self.zees]
D1 = diagonal_matrix(shapes_dd)
D2 = diagonal_matrix([1 / z for z in self.zees])
return (1 / QQ(2)) * det(self.A * D1 + self.B * D2) *\
self.exponentiate_list(self.zees, self.f_ddot) *\
self.exponentiate_list(shapes_dd, -self.f)
def pre_comp_polylog(self, index, z):
"""
This function contains the polylogs commonly used
in the calculation of the n-loop invariant.
These polylogs are used a large number of times
in a computation so they are saved to minimize waste.
"""
if index == 1:
return -ln(1 - z)
if index == 0:
return z / (1 - z)
if index == -1:
return z / (z ** 2 - 2 * z + 1)
if index == -2:
return (-z ** 2 - z) / (z ** 3 - 3 * z ** 2 + 3 * z - 1)
if index == -3:
return (z ** 3 + 4 * z ** 2 + z) / (z ** 4 - 4 * z ** 3 +\
6 * z ** 2 - 4 * z + 1)
if index == -4:
return (-z ** 4 - 11 * z ** 3 - 11 * z ** 2 - z) / (z **\
5 - 5 * z ** 4 + 10 * z ** 3 - 10 * z ** 2 + 5 * z - 1)
if index == -5:
return (z ** 5 + 26 * z ** 4 + 66 * z ** 3 + 26 * z ** 2 +\
z) / (z ** 6 - 6 * z ** 5 + 15 * z ** 4 - 20 * z ** 3 +\
15 * z ** 2 - 6 * z + 1)
if index == -6:
return (-z ** 6 - 57 * z ** 5 - 302 * z ** 4 - 302 * z **\
3 - 57 * z ** 2 - z) / (z ** 7 - 7 * z ** 6 + 21 *\
z ** 5 - 35 * z ** 4 + 35 * z ** 3 -\
21 * z ** 2 + 7 * z - 1)
if index == -7:
return (z ** 7 + 120 * z ** 6 + 1191 * z ** 5 + 2416 *\
z ** 4 + 1191 * z ** 3 + 120 * z ** 2 + z) / (z **\
8 - 8 * z ** 7 + 28 * z ** 6 - 56 * z ** 5 + 70 *\
z ** 4 - 56 * z ** 3 + 28 * z ** 2 - 8 * z + 1)
if index == -8:
return (-z ** 8 - 247 * z ** 7 - 4293 * z ** 6 -\
15619 * z ** 5 - 15619 * z ** 4 - 4293 * z **\
3 - 247 * z ** 2 - z) / (z ** 9 - 9 * z ** 8 +\
36 * z ** 7 - 84 * z ** 6 + 126 * z ** 5 - 126 *\
z ** 4 + 84 * z ** 3 - 36 * z ** 2 + 9 * z - 1)
if index == -9:
return (z ** 9 + 502 * z ** 8 + 14608 * z ** 7 +\
88234 * z ** 6 + 156190 * z ** 5 + 88234 * z ** 4 +\
14608 * z ** 3 + 502 * z ** 2 + z) / (z ** 10 -\
10 * z ** 9 + 45 * z ** 8 - 120 * z ** 7 + 210 * z **\
6 - 252 * z ** 5 + 210 * z ** 4 - 120 * z ** 3 + 45 *\
z ** 2 - 10 * z + 1)
if index == -10:
return (-z ** 10 - 1013 * z ** 9 - 47840 * z ** 8 -\
455192 * z ** 7 - 1310354 * z ** 6 - 1310354 * z ** 5 -\
455192 * z ** 4 - 47840 * z ** 3 - 1013 * z ** 2 - z) /\
(z ** 11 - 11 * z ** 10 + 55 * z ** 9 - 165 * z ** 8 +\
330 * z ** 7 - 462 * z ** 6 + 462 * z ** 5 - 330 * z **\
4 + 165 * z ** 3 - 55 * z ** 2 + 11 * z - 1)
if index == -11:
return (z ** 11 + 2036 * z ** 10 + 152637 * z ** 9 +\
2203488 * z ** 8 + 9738114 * z**7 + 15724248 *\
z ** 6 + 9738114 * z ** 5 + 2203488 * z ** 4 +\
152637 * z ** 3 + 2036 * z ** 2 + z) / (z ** 12 - 12 *\
z ** 11 + 66 * z ** 10 - 220 * z ** 9 + 495 * z ** 8 -\
792 * z ** 7 + 924 * z ** 6 - 792 * z ** 5 + 495 * z **\
4 - 220 * z ** 3 + 66 * z ** 2 - 12 * z + 1)
if index == -12:
return (-z ** 12 - 4083 * z ** 11 - 478271 * z ** 10 -\
10187685 * z ** 9 - 66318474 * z ** 8 - 162512286 *\
z ** 7 - 162512286 * z ** 6 - 66318474 * z ** 5 -\
10187685 * z ** 4 - 478271 * z ** 3 - 4083 * z **\
2 - z) / (z ** 13 - 13 * z ** 12 + 78 * z ** 11 -\
286 * z ** 10 + 715 * z ** 9 - 1287 * z ** 8 + 1716 *\
z ** 7 - 1716 * z ** 6 + 1287 * z ** 5 - 715 * z **\
4 + 286 * z ** 3 - 78 * z ** 2 + 13 * z - 1)
if index == -13:
return (z ** 13 + 8178 * z ** 12 + 1479726 * z ** 11 +\
45533450 * z ** 10 + 423281535 * z ** 9 + 1505621508 *\
z ** 8 + 2275172004 * z ** 7 + 1505621508 * z ** 6 +\
423281535 * z ** 5 + 45533450 * z ** 4 + 1479726 *\
z ** 3 + 8178 * z ** 2 + z) / (z ** 14 - 14 * z ** 13 +\
91 * z ** 12 - 364 * z ** 11 + 1001 * z ** 10 - 2002 *\
z ** 9 + 3003 * z ** 8 - 3432 * z ** 7 + 3003 * z **\
6 - 2002 * z ** 5 + 1001 * z ** 4 - 364 * z ** 3 +\
91 * z ** 2 - 14 * z + 1)
if index == -14:
return (-z ** 14 - 16369 * z ** 13 - 4537314 * z ** 12 -\
198410786 * z ** 11 - 2571742175 * z ** 10 -\
12843262863 * z ** 9 - 27971176092 * z ** 8 -\
27971176092 * z ** 7 - 12843262863 * z ** 6 -\
2571742175 * z ** 5 - 198410786 * z ** 4 - 4537314 *\
z ** 3 - 16369 * z ** 2 - z) / (z ** 15 - 15 * z **\
14 + 105 * z ** 13 - 455 * z ** 12 + 1365 * z ** 11 -\
3003 * z ** 10 + 5005 * z ** 9 - 6435 * z ** 8 +\
6435 * z ** 7 - 5005 * z ** 6 + 3003 * z ** 5 -\
1365 * z ** 4 + 455 * z ** 3 - 105 * z ** 2 + 15 *\
z - 1)
if index == -15:
return (z ** 15 + 32752 * z ** 14 + 13824739 * z ** 13 +\
848090912 * z ** 12 + 15041229521 * z ** 11 +\
102776998928 * z ** 10 + 311387598411 * z ** 9 +\
447538817472 * z ** 8 + 311387598411 * z ** 7 +\
102776998928 * z ** 6 + 15041229521 * z ** 5 +\
848090912 * z ** 4 + 13824739 * z ** 3 + 32752 * z **\
2 + z) / (z ** 16 - 16 * z ** 15 + 120 * z ** 14 -\
560 * z ** 13 + 1820 * z ** 12 - 4368 * z ** 11 +\
8008 * z ** 10 - 11440 * z ** 9 + 12870 * z ** 8 -\
11440 * z ** 7 + 8008 * z ** 6 - 4368 * z ** 5 +\
1820 * z ** 4 - 560 * z ** 3 + 120 * z ** 2 -\
16 * z + 1)
if index == -16:
return (-z ** 16 - 65519 * z ** 15 - 41932745 * z ** 14 -\
3572085255 * z ** 13 - 85383238549 * z ** 12 -\
782115518299 * z ** 11 - 3207483178157 * z ** 10 -\
6382798925475 * z ** 9 - 6382798925475 * z ** 8 -\
3207483178157 * z ** 7 - 782115518299 * z ** 6 -\
85383238549 * z ** 5 - 3572085255 * z ** 4 -\
41932745 * z ** 3 - 65519 * z ** 2 - z) / (z **\
17 - 17 * z ** 16 + 136 * z ** 15 - 680 * z **\
14 + 2380 * z ** 13 - 6188 * z ** 12 + 12376 *\
z ** 11 - 19448 * z ** 10 + 24310 * z ** 9 - 24310 *\
z ** 8 + 19448 * z ** 7 - 12376 * z ** 6 + 6188 * z **\
5 - 2380 * z ** 4 + 680 * z ** 3 - 136 * z ** 2 +\
17 * z - 1)
if index == -17:
return (z ** 17 + 131054 * z ** 16 + 126781020 * z ** 15 +\
14875399450 * z ** 14 + 473353301060 * z ** 13 +\
5717291972382 * z ** 12 + 31055652948388 * z ** 11 +\
83137223185370 * z ** 10 + 114890380658550 * z ** 9 +\
83137223185370 * z ** 8 + 31055652948388 * z ** 7 +\
5717291972382 * z ** 6 + 473353301060 * z ** 5 +\
14875399450 * z ** 4 + 126781020 * z ** 3 + 131054 *\
z ** 2 + z) / (z ** 18 - 18 * z ** 17 + 153 * z **\
16 - 816 * z ** 15 + 3060 * z ** 14 - 8568 * z **\
13 + 18564 * z ** 12 - 31824 * z ** 11 + 43758 *\
z ** 10 - 48620 * z ** 9 + 43758 * z ** 8 - 31824 *\
z ** 7 + 18564 * z ** 6 - 8568 * z ** 5 + 3060 *\
z ** 4 - 816 * z ** 3 + 153 * z ** 2 - 18 * z + 1)
if index == -18:
return (-z ** 18 - 262125 * z ** 17 - 382439924 * z ** 16 -\
61403313100 * z ** 15 - 2575022097600 * z ** 14 -\
40457344748072 * z ** 13 - 285997074307300 * z ** 12 -\
1006709967915228 * z ** 11 - 1865385657780650 * z **\
10 - 1865385657780650 * z ** 9 - 1006709967915228 *\
z ** 8 - 285997074307300 * z ** 7 - 40457344748072 *\
z ** 6 - 2575022097600 * z ** 5 - 61403313100 * z **\
4 - 382439924 * z ** 3 - 262125 * z ** 2 - z) / (z **\
19 - 19 * z ** 18 + 171 * z ** 17 - 969 * z ** 16 +\
3876 * z ** 15 - 11628 * z ** 14 + 27132 * z ** 13 -\
50388 * z ** 12 + 75582 * z ** 11 - 92378 * z ** 10 +\
92378 * z ** 9 - 75582 * z ** 8 + 50388 * z ** 7 -\
27132 * z ** 6 + 11628 * z ** 5 - 3876 * z ** 4 +\
969 * z ** 3 - 171 * z ** 2 + 19 * z - 1)
if index == -19:
return (z ** 19 + 524268 * z ** 18 + 1151775897 * z ** 17 +\
251732291184 * z ** 16 + 13796160184500 * z ** 15 +\
278794377854832 * z ** 14 + 2527925001876036 * z **\
13 + 11485644635009424 * z ** 12 + 27862280567093358 *\
z ** 11 + 37307713155613000 * z ** 10 +\
27862280567093358 * z ** 9 + 11485644635009424 * z **\
8 + 2527925001876036 * z ** 7 + 278794377854832 * z **\
6 + 13796160184500 * z ** 5 + 251732291184 * z ** 4 +\
1151775897 * z ** 3 + 524268 * z ** 2 + z) / (z **\
20 - 20 * z ** 19 + 190 * z ** 18 - 1140 * z ** 17 +\
4845 * z ** 16 - 15504 * z ** 15 + 38760 * z ** 14 -\
77520 * z ** 13 + 125970 * z ** 12 - 167960 * z **\
11 + 184756 * z ** 10 - 167960 * z ** 9 + 125970 *\
z ** 8 - 77520 * z ** 7 + 38760 * z ** 6 - 15504 *\
z ** 5 + 4845 * z ** 4 - 1140 * z ** 3 + 190 * z **\
2 - 20 * z + 1)
def feynman_loop_number(self, diagram):
"""
Calculate the Feynman Loop Number of a Diagram.
The Feynman Loop Number of a connected looped multigraph
is the number of 1-vertices+2-vertices + the number of loops
"""
if diagram.num_edges() == 0:
return 0
return diagram.degree().count(1) + diagram.degree().count(2) +\
diagram.num_edges() - diagram.num_verts() + 1
def symmetry_factor(self, diag):
"""
Calculate the symmetry factor of a diagram.
This is equal to the order of the group of vertex
permutations preserving edges times k! for each
k-multiedge times 2^number of loops
"""
symfactor = diag.automorphism_group().cardinality()
for foo in diag.vertices():
for bar in range(foo, diag.num_verts()):
conecs = diag.adjacency_matrix()[foo][bar]
symfactor = kronecker_delta(foo, bar) * symfactor * 2 **\
conecs * factorial(conecs) + (1 - kronecker_delta(\
foo, bar)) * symfactor * factorial(conecs)
return QQ(1) / symfactor
def bernoulli_plus_half(self, m):
"""Return bernoulli number with convention B1=+1/2."""
return bernoulli(m) * (-1) ** m
def polylogarithm(self, index, z):
"""Give the nth polylogarithm evaluated at z."""
if (index, z) in self.prev:
return self.prev[(index, z)]
if index <= 1 and index >= -19:
tmp = self.pre_comp_polylog(index, z)
self.prev[(index, z)] = tmp
if len(self.prev) > 1000:
self.prev.popitem(last=False)
return tmp
return polylog(index, z)
def gamma(self, eye, kay, ell):
"""Return the gamma equation for vertex_factor_tensor."""
K = NumberField(self.p, 'y')
y = K.gen()
R = LaurentPolynomialRing(K, 'h')
h = R.gen()
if kay == 0:
return sum([self.polylogarithm(2 - self.n, 1 / z) for z\
in self.zees]) * self.bernoulli_plus_half(self.n) /\
factorial(self.n) + kronecker_delta(self.n, 2) *\
(self.f * self.B.inverse() * self.A *\
self.f / 8)[0][0]
return (-1) ** kay * sum([h ** (bar - 1) / factorial(bar) *\
self.bernoulli_plus_half(bar) * self.polylogarithm(\
2 - bar - kay, 1 / self.zees[eye]) for bar in\
range((kronecker_delta(kay, 1) + kronecker_delta(kay, 2)),\
1 + (kronecker_delta(kay, 1) + kronecker_delta(kay, 2)) +\
self.n - ell)]) - kronecker_delta(kay, 1) * QQ(1) / 2 *\
(self.B.inverse() * self.nu)[eye]
def vertex_factor_tensor(self):
"""
Generate vertex gamma as a tensor access values.
Output is in the form
vertexgamma[feynman_loop_number][vertex_degree][ith_shape_parameter]
"""
K = NumberField(self.p, 'y')
y = K.gen()
R = LaurentPolynomialRing(K, 'h')
h = R.gen()
return [[[self.gamma(eye, kay, ell) for eye in
range(len(self.zees))] for kay in range(2 * self.n + 1)]\
for ell in range(self.n + 1)]
def diagram_contribution_to_nloop(self, diagram):
"""The diagram contribution to the n-loop invariant."""
K = NumberField(self.p, 'y')
y = K.gen()
R = LaurentPolynomialRing(K, 'h')
h = R.gen()
N = len(self.zees)
hamil = -self.B.inverse()*self.A + diagonal_matrix([1 / (1 - z)\
for z in self.zees])
prop = h * hamil.inverse()
temp_sum = 0
for foo in range(N ** diagram.num_verts()):
indices = [floor(foo / (N ** bar)) % N for bar in
range(diagram.num_verts())]
temp_sum += prod([prop[indices[eee[0]]]
[indices[eee[1]]] for eee in diagram.edges
(labels=False)] +
[self.ver_factor[self.feynman_loop_number(diagram)]
[diagram.degree()[vee]][indices[vee]] for vee in
diagram.vertices()])
ans = self.symmetry_factor(diagram) * temp_sum *\
(h ** (-self.n + 1))
return ans.constant_coefficient()
def nloop_invariant(self):
"""The Dimofte-Garoufalidis n-loop invariant."""
K = NumberField(self.p, 'y')
y = K.gen()
R = LaurentPolynomialRing(K, 'h')
h = R.gen()
self.ver_factor = self.vertex_factor_tensor()
PROCESSES = multiprocessing.cpu_count()
#print 'cpu_count() = %d\n' % multiprocessing.cpu_count()
pool = multiprocessing.Pool(PROCESSES)
collect_results = pool.map(self.diagram_contribution_to_nloop,\
self.diagrams)
loop_invar = sum(collect_results) + self.ver_factor[self.n][0][0]
return loop_invar
def nloop_from_manifold(manifold, n, diagrams, engine=None, verbose=False,\
file_name=None):
D = NeumannZagierDatum(manifold, engine, verbose, file_name)
D.generate_nz_data()
E = nloop(D.nz, n, all_diagrams)
if n == 1:
return [E.one_loop(), D.nz]
return [E.nloop_invariant(), D.nz]
def nloop_from_nzdatum(nz, n, diagrams):
E = nloop(nz, n, all_diagrams)
if n == 1:
return [E.one_loop(), nz]
return [E.nloop_invariant(), nz]