-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
383 lines (303 loc) · 12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import caffe
import logging
from caffe import layers as L, NetSpec
from caffe.proto.caffe_pb2 import NetParameter
import argparse
def get_batch_iter(num, c):
r = 0
while True:
while num % c > r:
c = c - 1
if c != 1:
break
r = r + 1
return c, num / c
class Model(object):
def __init__(self, input_format, **kwargs):
self.__dict__['infmt'] = input_format
self.__dict__['params'] = dict(
name='unnamed_net',
batch_size=64,
batch_sizes=[64, 64], # respectively train and val batch sizes
channels=3,
pretrain=None,
optimal_batch_size=None,
crop_on_test=True,
)
if 'batch_sizes' in kwargs and type(kwargs['batch_sizes']) is not list:
kwargs['batch_sizes'] = [kwargs['batch_sizes'], kwargs['batch_sizes']]
self.params.update(kwargs)
def __getattr__(self, name):
if name in self.__dict__:
return self.__dict__[name]
if 'params' in self.__dict__ and name in self.__dict__['params']:
return self.__dict__['params'][name]
raise AttributeError("No attribute called {} is present".format(name))
def __setattr__(self, name, value):
if name in self.params:
self.params[name] = value
else:
object.__setattr__(self, name, value)
def get_train_batch_size(self):
return self.batch_sizes[0]
def get_val_batch_size(self):
return self.batch_sizes[1]
def optimize_batch_size(self):
# override!
self.optimal_batch_size = 1000
if self.optimal_batch_size is not None:
self.batch_size = self.optimal_batch_size
return self.optimal_batch_size
feas = 1
l, u = 1, 2048
logging.info("Optimizing batch size... ")
while l <= u:
c = (l + u) / 2
self.batch_size = c
with open("tmp.prototxt", "w") as f:
f.write(self.to_deploy_prototxt(optimize=False)[0])
ret = os.system("caffe-try-batch-size tmp.prototxt")
if ret == 0: # feasible
logging.debug("Feasible batch size of {}".format(c))
feas = c
l = c + 1
else:
u = c - 1
os.remove("tmp.prototxt")
self.batch_size = feas
self.optimal_batch_size = feas
logging.info("Max batch in gpu mem: {}".format(feas))
return feas
def deploy_head(self):
net = NetParameter()
net.name = self.name
net.input.append("data")
inshape = net.input_shape.add()
inshape.dim.append(self.batch_size)
inshape.dim.append(self.channels)
inshape.dim.append(self.infmt.crop_size)
inshape.dim.append(self.infmt.crop_size)
return net
def deploy_tail(self, last_top):
n = NetSpec()
n.score = L.Softmax(bottom=last_top)
return n.to_proto()
def train_head(self, subset):
n = NetSpec()
# train
image_data_param = dict(
source=subset.get_list_absolute_path(),
batch_size=self.batch_sizes[0],
new_width=self.infmt.new_width,
new_height=self.infmt.new_height,
rand_skip=self.batch_size,
shuffle=True
)
if subset.root_folder is not None:
image_data_param['root_folder'] = subset.root_folder
transform_param = dict(
mirror=self.infmt.mirror,
crop_size=self.infmt.crop_size,
# mean_value = self.infmt.mean_pixel,
)
if self.infmt.scale is not None:
transform_param['scale'] = self.infmt.scale
if self.infmt.mean_file is not None:
transform_param['mean_file'] = self.infmt.mean_file
elif self.infmt.mean_pixel is not None:
transform_param['mean_value'] = self.infmt.mean_pixel
n.data, n.label = L.ImageData(ntop=2, image_data_param=image_data_param,
transform_param=transform_param, include=dict(phase=caffe.TRAIN))
net = n.to_proto()
net.name = self.name
return net
def train_tail(self, last_top):
n = NetSpec()
n.loss = L.SoftmaxWithLoss(bottom=[last_top, "label"])
return n.to_proto()
def val_head(self, subset, stage=None):
image_data_param = dict(
source=subset.get_list_absolute_path(),
batch_size=self.batch_sizes[1],
# root_folder=subset.root_folder,
rand_skip=self.batch_sizes[1],
shuffle=True,
# new_width,
# new_height
)
transform_param = dict(
mirror=False,
# crop_size = self.infmt.crop_size,
# mean_value = self.infmt.mean_pixel,
# mean_file,
# scale,
)
if subset.root_folder is not None:
image_data_param['root_folder'] = subset.root_folder
if self.crop_on_test:
image_data_param['new_width'] = self.infmt.new_width
image_data_param['new_height'] = self.infmt.new_height
transform_param['crop_size'] = self.infmt.crop_size
else:
image_data_param['new_width'] = self.infmt.crop_size
image_data_param['new_height'] = self.infmt.crop_size
if self.infmt.scale is not None:
transform_param['scale'] = self.infmt.scale
if self.infmt.mean_file is not None:
transform_param['mean_file'] = self.infmt.mean_file
elif self.infmt.mean_pixel is not None:
transform_param['mean_value'] = self.infmt.mean_pixel
include_param = dict(phase=caffe.TEST)
if stage is not None:
include_param['stage'] = stage
n = NetSpec()
n.data, n.label = L.ImageData(ntop=2, image_data_param=image_data_param,
transform_param=transform_param , include=include_param)
net = n.to_proto()
net.name = self.name
return net
def val_tail(self, last_top, stage=None):
n = NetSpec()
include_param = dict(phase=caffe.TEST)
if stage is not None:
include_param['stage'] = stage
if stage is None:
n.loss = L.SoftmaxWithLoss(bottom=[last_top, "label"])
n.accuracy = L.Accuracy(bottom=[last_top, "label"] , include=include_param)
return n.to_proto()
def test_head(self, subset):
n = NetSpec()
# test
image_data_param = dict(
source=subset.get_list_absolute_path(),
batch_size=self.batch_size,
root_folder=subset.root_folder
# new_width,
# new_height
)
transform_param = dict(
# crop_size = self.infmt.crop_size,
# mean_value = self.infmt.mean_pixel,
# mean_file,
# scale
)
if self.crop_on_test:
image_data_param['new_width'] = self.infmt.new_width
image_data_param['new_height'] = self.infmt.new_height
transform_param['crop_size'] = self.infmt.crop_size
else:
image_data_param['new_width'] = self.infmt.crop_size
image_data_param['new_height'] = self.infmt.crop_size
if self.infmt.params['scale'] is not None:
transform_param['scale'] = self.infmt.scale
if self.infmt.mean_file is not None:
transform_param['mean_file'] = self.infmt.mean_file
elif self.infmt.mean_pixel is not None:
transform_param['mean_value'] = self.infmt.mean_pixel
n.data, n.label = L.ImageData(ntop=2, image_data_param=image_data_param,
transform_param=transform_param) # , include=dict(phase=caffe.TEST))
net = n.to_proto()
net.name = self.name
return net
def test_tail(self, last_top):
n = NetSpec()
n.accuracy = L.Accuracy(bottom=[last_top, "label"], include=dict(phase=caffe.TEST))
return n.to_proto()
def extract_head(self, subset):
image_data_param = dict(
source=subset.get_list_absolute_path(),
batch_size=self.batch_size,
root_folder=subset.root_folder,
# new_width,
# new_height
)
transform_param = dict(
mirror=False,
# crop_size = self.infmt.crop_size,
# mean_value = self.infmt.mean_pixel,
# mean_file,
# scale,
)
if self.crop_on_test:
image_data_param['new_width'] = self.infmt.new_width
image_data_param['new_height'] = self.infmt.new_height
transform_param['crop_size'] = self.infmt.crop_size
else:
image_data_param['new_width'] = self.infmt.crop_size
image_data_param['new_height'] = self.infmt.crop_size
if self.infmt.scale is not None:
transform_param['scale'] = self.infmt.scale
if self.infmt.mean_file is not None:
transform_param['mean_file'] = self.infmt.mean_file
elif self.infmt.mean_pixel is not None:
transform_param['mean_value'] = self.infmt.mean_pixel
n = NetSpec()
n.data, n.label = L.ImageData(ntop=2, image_data_param=image_data_param,
transform_param=transform_param) # , include=dict(phase=caffe.TEST))
net = n.to_proto()
net.name = self.name
return net
# abstract method: must return a NetParameter object and last top name
def body(self):
raise NotImplementedError()
def to_train_val_prototxt(self, train, vals):
net = self.train_head(train)
for v in vals:
tmp_net = self.val_head(v, stage='val-on-' + v.get_name())
net.MergeFrom(tmp_net)
tmp_net, last_top = self.body()
net.MergeFrom(tmp_net)
tmp_net = self.train_tail(last_top)
net.MergeFrom(tmp_net)
for v in vals:
tmp_net = self.val_tail(last_top, stage='val-on-' + v.get_name())
net.MergeFrom(tmp_net)
return net
def to_deploy_prototxt(self, optimize=True):
if optimize: self.optimize_batch_size()
net = self.deploy_head()
tmp_net, last_top = self.body()
net.MergeFrom(tmp_net)
tmp_net = self.deploy_tail(last_top)
net.MergeFrom(tmp_net)
return net
def to_train_prototxt(self, subset):
net = self.train_head(subset)
tmp_net, last_top = self.body()
net.MergeFrom(tmp_net)
tmp_net = self.train_tail(last_top)
net.MergeFrom(tmp_net)
return net
def to_val_prototxt(self, subset):
net = self.val_head(subset)
tmp_net, last_top = self.body()
net.MergeFrom(tmp_net)
tmp_net = self.val_tail(last_top)
net.MergeFrom(tmp_net)
return net
def to_test_prototxt(self, subset):
self.optimize_batch_size()
num = subset.get_count()
c = min(1000, self.batch_size)
self.batch_size, iters = get_batch_iter(num, c)
logging.debug("Using batch size x iters = {} x {} = {} images (out of {})".format(c, iters, c * iters, num))
net = self.test_head(subset)
tmp_net, last_top = self.body()
net.MergeFrom(tmp_net)
tmp_net = self.test_tail(last_top)
net.MergeFrom(tmp_net)
return net, iters
def to_extract_prototxt(self, subset):
self.optimize_batch_size()
num = subset.get_count()
c = min(400, self.batch_size)
c, iters = get_batch_iter(num, c)
logging.debug("Using batch size x iters = {} x {} = {} images (out of {})".format(c, iters, c * iters, num))
self.batch_size = c
net = self.extract_head(subset)
tmp_net, last_top = self.body()
net.MergeFrom(tmp_net)
tmp_net = self.deploy_tail(last_top)
net.MergeFrom(tmp_net)
return net, 'score', iters