-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlook_inside_naive_bayes.py
54 lines (39 loc) · 2.14 KB
/
look_inside_naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.metrics import accuracy_score, auc, roc_curve
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
import numpy as np
from sklearn.datasets import fetch_20newsgroups
vectoriser = CountVectorizer(lowercase=True,
max_features=1000)
transformer = TfidfTransformer()
nb = MultinomialNB()
model = make_pipeline(vectoriser, transformer, nb)
categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42)
model.fit( twenty_train['data'], twenty_train['target'])
def look_inside_naive_bayes(model):
vectoriser= model.named_steps['countvectorizer']
transformer= model.named_steps['tfidftransformer']
nb= model.named_steps['multinomialnb']
fake_document = " ".join(vectoriser.vocabulary_)
vectorised_document = vectoriser.transform([fake_document])
transformed_document = transformer.transform(vectorised_document)
probas = np.zeros((transformed_document.shape[1]))
vocab_idx_to_string_lookup = [""] * transformed_document.shape[1]
for w, i in vectoriser.vocabulary_.items():
vocab_idx_to_string_lookup[i] = w
transformed_documents = np.zeros((transformed_document.shape[1], transformed_document.shape[1]))
for i in range(transformed_document.shape[1]):
transformed_documents[i, i] = transformed_document[0, i]
probas_for_vocab_and_class = nb.predict_log_proba(transformed_documents)
for prediction_idx, label in enumerate(model.classes_):
print(f"Strongest predictors for class {label}\n")
probas_this_class = probas_for_vocab_and_class[:, prediction_idx]
top_vocab_idxes_this_class = np.argsort(-probas_this_class)
for ctr, j in enumerate(top_vocab_idxes_this_class[:10]):
word = vocab_idx_to_string_lookup[j]
print(f"{ctr}\t{word}")
look_inside_naive_bayes(model)