-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_networks.py
39 lines (34 loc) · 1.24 KB
/
deep_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 27 13:39:00 2021
@author: Fernando Caprile
"""
from keras.models import Sequential
from keras.layers import Dense
def simple(N_features):
# create model
model = Sequential()
model.add(Dense(N_features, input_dim=N_features, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def deep_1_layer(N_features):
# create model
model = Sequential()
model.add(Dense(N_features, input_dim=N_features, activation='relu'))
model.add(Dense(2*N_features, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def deep_2_layers(N_features):
# create model
model = Sequential()
model.add(Dense(N_features, input_dim=N_features, activation='relu'))
model.add(Dense(2*N_features, activation='relu'))
model.add(Dense(2*N_features, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model