-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample-model.py
191 lines (167 loc) · 6.18 KB
/
sample-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import fastai as fa
import fastai.text as fatext
import numpy as np
import sentencepiece as sp
import torch
import torch.nn.functional as F
import readline
from typing import List
def loadVocab(filename):
with open(filename, "r") as f:
tokens = [l.strip().split()[0] for l in f]
return fatext.transform.Vocab(tokens)
def loadEnVocab(filename):
return fatext.transform.Vocab(np.load(filename))
def pred_batch(learner, xb):
a = learner.model.eval()(xb)
return F.softmax(a[0].detach().cpu(), dim=-1), a[1]
def predict(vocab, learner, tokens:List[str], n_words:int=1, temperature:float=1., min_p:float=None,
excluded_tokens:List[str]=["<unk>"],
promoted_tokens:List[str]=[],
interactive=False,
track="",
repetition_penalty:float=0.):
"Return the `n_words` that come after `tokens`."
learner.model.reset()
# generoidaan väritystilassa todennäköisyydet myös kehotteelle, joten ei syötetä kehotetta mallille alussa
if track != "":
xb = torch.tensor([[0]])
output = tokens
tokens = []
else:
xb = torch.tensor([vocab.numericalize(tokens or [""])])
output = []
history = []
for i_x in range(len(output) + n_words):
# -n-tilassa lasketaan lauseupotuksen arvot (en uskalla käyttää tätä muulloin, pitäisi kyllä)
if track and track.startswith("-n"):
res, embeddings = pred_batch(learner, xb)
res = res[0][-1]
else:
res = learner.pred_batch(batch=(xb,torch.tensor([0])))[0][-1]
#if len(new_idx) == 0: learner.model[0].select_hidden([0])
# muutetaan poissuljettujen ja tuettujen sanakkeiden todennäköisyydet
for token in excluded_tokens:
res[learner.data.vocab.stoi[token]] = 0.
for token in promoted_tokens:
res[learner.data.vocab.stoi[token]] *= 10.
if repetition_penalty > 0.:
for i, token_id in enumerate(reversed(history)):
res[token_id] *= 1.0-repetition_penalty*2**(-i*.1)
if min_p is not None:
if (res >= min_p).float().sum() == 0:
warn(f"There is no item with probability >= {min_p}, try a lower value.")
else: res[res < min_p] = 0.
if temperature != 1.: res.pow_(1 / temperature)
# otetaan output-taulukosta valmis arvo, käytetään -p-tilassa todennäköisyyksien laskemiseen kehotteelle
if len(output) > i_x:
idx = learner.data.vocab.stoi[output[i_x]]
# interaktiivisessa tilassa kysytään käyttäjältä
elif interactive:
argsort = res.argsort().tolist()
print("".join(tokens+output))
print(*["\t%d. %s (%f)" % (i + 1, learner.data.vocab.itos[n], res[n]) for i, n in enumerate(argsort[:-16:-1])], sep="\n")
try:
n = int(input("> "))
if n == 0: break
idx = argsort[-n]
except:
idx = torch.multinomial(res, 1).item()
# muulloin arvotaan jokin arvo
else:
idx = torch.multinomial(res, 1).item()
token = learner.data.vocab.itos[idx]
history.append(idx)
# lisätään tarvittaessa väritys sanakkeeseen
if track and track[:2] not in ["-n", "-p"] and track in learner.data.vocab.stoi:
token = "\x1b[48;2;%d;0;0m%s" % (min(int((res[learner.data.vocab.stoi[track]]**0.1)*255), 255), token)
elif track and track == "-p":
token = "\x1b[48;2;%d;0;0m%s" % (min(int((res[idx]**0.1)*255), 255), token)
elif track and track.startswith("-n"):
n = int(track[2:])
token = get_neuron_color(embeddings, n, token)
if len(output) <= i_x:
output.append(token)
else:
output[i_x] = token
xb = xb.new_tensor([idx])[None]
return tokens + output
def create_heatmaps(vocab, learner, tokens:List[str], temperature:float=1.):
learner.model.reset()
xb = torch.tensor([[0]])
output = [""] * 400
for token in tokens:
idx = learner.data.vocab.stoi[token]
xb = xb.new_tensor([idx])[None]
_, embeddings = pred_batch(learner, xb)
for n in range(400):
output[n] += get_neuron_color(embeddings, n, token)
for n in range(400):
print(n)
print(output[n])
print()
def get_neuron_color(embeddings, n, token):
red = max(embeddings[2][0][-1][n], 0)
blue = max(-embeddings[2][0][-1][n], 0)
return "\x1b[48;2;%d;0;%dm%s" % (min(int(red*255), 255), min(int(blue*255), 255), token)
def main(vocab_prefix, model_file, n=0, en=False, prompt="", heatmaps=False, transformerxl=False):
if not en:
vocab = loadVocab(vocab_prefix + ".vocab")
spm = sp.SentencePieceProcessor()
spm.Load(vocab_prefix + ".model")
else:
vocab = loadEnVocab(vocab_prefix)
db = fatext.data.TextLMDataBunch.from_ids(".", vocab, np.array([[0]]), np.array([[0]]))
learner = fatext.learner.language_model_learner(db, fatext.models.AWD_LSTM if not transformerxl else fatext.models.TransformerXL, pretrained=False)
learner.load(model_file)
params = {
"temp": [float, 0.7],
"top_k": [int, 10],
"n": [int, 100],
"beam_sz": [int, 1000],
"type": [str, "no beam"],
"excl": [lambda s: s.split(" "), ["<unk>"]],
"promo": [lambda s: s.split(" "), []],
"interactive": [lambda s: (False if s.lower() in ["", "0", "false", "f"] else True), False],
"repe": [float, 0.],
"color": [str, ""]
}
if n:
print("".join(predict(vocab, learner, spm.EncodeAsPieces(prompt), n, temperature=0.7)).replace("▁", " "))
return
if heatmaps:
create_heatmaps(vocab, learner, spm.EncodeAsPieces(prompt), temperature=0.7)
return
while True:
try:
text = input("> ").lower()
except EOFError:
break
for key in params:
if text.startswith("/%s " % key):
params[key][1] = params[key][0](text[len("/%s " % key):])
break
else:
if not en:
tokens = spm.EncodeAsPieces(text)
else:
tokens = vocab.numericalize(text.split(" "))
if params["type"][1] == "beam":
prediction = learner.beam_search(" ".join(tokens), params["n"][1], temperature=params["temp"][1], top_k=params["top_k"][1], beam_sz=params["beam_sz"][1]).split(" ")
else:
prediction = predict(vocab, learner, tokens, params["n"][1],
temperature=params["temp"][1],
excluded_tokens=params["excl"][1],
promoted_tokens=params["promo"][1],
interactive=params["interactive"][1],
repetition_penalty=params["repe"][1],
track=params["color"][1])
out = ""
for i, token in enumerate(prediction):
out += "\x1b[" + ("0m" if i%2 == 0 else "4m") + token.replace("▁", " ")
if en:
out += " "
print(out + "\x1b[0m")
if __name__ == "__main__":
import fire
fire.Fire(main)