-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_autoencoder.py
149 lines (122 loc) · 4.61 KB
/
example_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("tmp/data/", one_hot=True)
# Training Parameters
learning_rate = 0.01
num_steps = 20000
batch_size = 256
display_step = 1000
examples_to_show = 10
# Network Parameters
num_hidden_1 = 256 # 1st layer num features
num_hidden_2 = 64 # 2nd layer features (the latent dim)
num_input = 784 # MNIST data input (img shape: 28*28)
# tf Graph input (only pictures)
X = tf.placeholder("float", [None, num_input])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([num_input, num_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([num_hidden_2, num_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([num_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([num_input])),
}
# Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Encoder Hidden layer with sigmoid activation
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2
# Building the decoder
def decoder(x):
# Decoder Hidden layer with sigmoid activation
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2
# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data
y_true = X
# Define loss and optimizer, minimize the squared error
loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)
# Initialize the variables
init = tf.global_variables_initializer()
# Define plot module
def plotgraph(x):
fig = plt.figure(figsize=(4, 4))
plt.imshow(x, origin="upper", cmap="gray")
return fig
# Start Training
# Start a new session
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# Training
for i in range(1, num_steps+1):
# Prepare Data
# Get the next batch of MNIST data (only images are needed, not labels)
batch_x, _ = mnist.train.next_batch(batch_size)
# Run optimization op and cost op
_, l = sess.run([optimizer, loss], feed_dict={X: batch_x})
# Display logs per step
if i % display_step == 0 or i == 1:
print('Step % i: Minibatch Loss: %f' % (i, l))
# Testing
# Encode and decode images from test set and visualize their reconstruction
n = 4
canvas_orig = np.empty((28 * n, 28 * n))
canvas_recon = np.empty((28 * n, 28 * n))
canvas_encoded = np.empty((8 * n, 8 * n))
for i in range(n):
# MNIST test set
batch_x, _ = mnist.test.next_batch(n)
# Encode and decode the digit image
g = sess.run(decoder_op, feed_dict={X: batch_x})
# Encode the digit image
f = sess.run(encoder_op, feed_dict={X: batch_x})
# Display original images
for j in range(n):
# Draw the original digits
canvas_orig[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = \
batch_x[j].reshape([28, 28])
# Display reconstructed images
for j in range(n):
# Draw the reconstructed digits
canvas_recon[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = \
g[j].reshape([28, 28])
# Display encoded images
for j in range(n):
# Draw the encoded digits
canvas_encoded[i * 8:(i + 1) * 8, j * 8:(j + 1) * 8] = \
f[j].reshape([8, 8])
# Save figure to pdf
pp = PdfPages("foo.pdf")
plot1 = plotgraph(canvas_orig)
plot2 = plotgraph(canvas_encoded)
plot3 = plotgraph(canvas_recon)
pp.savefig(plot1)
pp.savefig(plot2)
pp.savefig(plot3)
pp.close()
'''
plt.figure(figsize=(n, n))
plt.imshow(canvas_encoded, origin="upper", cmap="gray")
plt.savefig("orig.png")
'''