-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnotebook_helper.py
227 lines (197 loc) · 10.3 KB
/
notebook_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import spikeforest as sf
import spikeinterface.full as si
import spikeinterface.widgets as sw
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import glob
from scipy import signal
from sklearn.linear_model import LinearRegression
import yaml
from cdlgr.dataset.dataset import get_dataset
def load_dataset(name):
config = yaml.load(open(f'cdlgr/config/dataset/{name}.yaml'), Loader=yaml.FullLoader)
config["preprocess"] = False
config["dataset"] = config
config["output"] = {"verbose": False}
return get_dataset(config)
def get_spectrogram(recording, end_frame=100000):
return signal.spectrogram(recording.get_traces(end_frame=end_frame).flatten(), recording.get_sampling_frequency(),
nperseg=512, noverlap=256, window=('tukey', 0.25))
def fft_rec(rec, end_frame=100000, freq_lim=6000):
tr = rec.get_traces(end_frame=end_frame)
fs = rec.get_sampling_frequency()
print(fs)
t = np.arange(0,end_frame)/fs
print(tr.shape, t.shape)
# Perform FFT
fft_result = np.fft.fft(tr)#[:len(tr)//2]
frequencies = np.fft.fftfreq(len(tr), 1/fs)#[:len(tr)//2]
# Plot the original signal and its frequency domain representation
plt.figure(figsize=(10, 7))
plt.subplot(2, 1, 1)
plt.plot(t, tr)
plt.title('Original Signal')
plt.subplot(2, 1, 2)
plt.plot(frequencies, np.abs(fft_result))
plt.title('Frequency Domain Representation')
plt.xlabel('Frequency (Hz)')
plt.xlim(0, freq_lim)
plt.tight_layout()
plt.show()
# Experiments helpers
def fetch_metric(path, metric="accuracy", mode="test"):
"""
Fetch accuracy stored in experiment folder indicated by path, for train or test mode.
"""
df = pd.read_csv(os.path.join(path, f"perf-{mode}.csv"))
return (df[metric].values, df.index.values)
def show_plot(path):
"""
Fetch plot stored in experiment folder indicated by path.
"""
plt.figure(figsize=(8, 8))
plt.imshow(plt.imread(path))
plt.axis("off")
plt.show()
def find_file_with_suffix(path, suffix):
"""
Find file with specified suffix in path.
"""
files = glob.glob(os.path.join(path, f"*{suffix}"))
for file in files:
if file.endswith(suffix):
return file
return None
def show_plots(path, num_elements=2, num_iterations=10, show_confusion_train=False):
"""
Show plots stored in experiment folder indicated by path.
"""
print("Initial dictionary:")
for el in range(num_elements):
show_plot(os.path.join(path, f"dictionary--01-{el:03}.png"))
# print("Final dictionary:")
# for el in range(num_elements):
# show_plot(os.path.join(path, f"dictionary-{num_iterations-1:03}-{el:03}.png"))
print("Final dictionary (shifted and interpolated truth):")
for el in range(num_elements):
show_plot(os.path.join(path, f"dictionary-i-{num_iterations-1:03}-{el:03}.png"))
print("True positive on test set:")
TP_name = find_file_with_suffix(path, "test_TP.png")
if TP_name:
show_plot(os.path.join(path, os.path.basename(TP_name)))
else:
print("No true positive for test run.")
print("False positive on test set:")
FP_name = find_file_with_suffix(path, "test_FP.png")
if FP_name:
show_plot(os.path.join(path, os.path.basename(FP_name)))
else:
print("No false positive for test run.")
if show_confusion_train:
print("Confusion matrix train:")
show_plot(os.path.join(path, "confusion_matrix-train.png"))
print("Confusion matrix test:")
show_plot(os.path.join(path, "confusion_matrix-test.png"))
print("Time:")
show_plot(os.path.join(path, "time.png"))
def report_average_multi_run_perfs(dataset, experiment, metric="accuracy", num_elements=2, interpolations=np.array([0, 10]), seeds=np.arange(1, 6), mode="test", average_only=False):
"""
Average metrics over multiple runs of the same experiment.
"""
type_exp = "multi"
if experiment == 'sandbox':
type_exp = "single"
exp_path = os.path.join("outputs", f"{dataset}_experiments", f"experiment_{experiment}", type_exp)
units = np.arange(num_elements)
metrics_by_interp_and_unit = {interpolation: {unit: [] for unit in units} for interpolation in interpolations}
print(f"Averaged {metric}:")
# Iterate over each interpolation value
for interpolation in interpolations:
# Average over seed values
for seed in seeds:
metric_by_unit = fetch_metric(os.path.join(exp_path, f"interp_{num_elements}_{interpolation}", f"seed_{seed}"), metric=metric, mode=mode)[0]
for unit in units:
if unit < len(metric_by_unit):
metrics_by_interp_and_unit[interpolation][unit].append(metric_by_unit[unit])
print("interpolation:", interpolation)
overall_interpolation = np.array([])
for unit in units:
if len(metrics_by_interp_and_unit[interpolation][unit]) > 0:
print(f"unit {unit}: {np.mean(metrics_by_interp_and_unit[interpolation][unit]):.3f} +/- {np.std(metrics_by_interp_and_unit[interpolation][unit]):.3f}")
overall_interpolation = np.concatenate((overall_interpolation, metrics_by_interp_and_unit[interpolation][unit]))
print(f"Overall: {np.mean(overall_interpolation):.3f} +/- {np.std(overall_interpolation):.3f}")
print()
def report_multirun_dict_error(dataset, experiment, num_elements=2, interpolations=np.array([0, 10]), seeds=np.arange(1, 6)):
"""
Report distance between dictionaries over multiple runs of the same experiment.
"""
type_exp = "multi"
if experiment == 'sandbox':
type_exp = "single"
exp_path = os.path.join("outputs", f"{dataset}_experiments", f"experiment_{experiment}", type_exp)
units = np.arange(num_elements)
error_by_interp_and_unit = {interpolation: {unit: {"error": [], "offset": []} for unit in units} for interpolation in interpolations}
print("Averaged error and time offset by interpolation and unit:")
# Iterate over each interpolation value
for interpolation in interpolations:
# Average over seed values
for seed in seeds:
error_and_offset_by_unit = np.load(os.path.join(exp_path, f"interp_{num_elements}_{interpolation}", f"seed_{seed}", "interpolated_dictionary_error.npz"))
error_by_unit = error_and_offset_by_unit["error"]
offset_by_unit = error_and_offset_by_unit["time_offset"]
for unit in units:
if not np.isinf(error_by_unit[unit]):
error_by_interp_and_unit[interpolation][unit]["error"].append(error_by_unit[unit])
error_by_interp_and_unit[interpolation][unit]["offset"].append(offset_by_unit[unit])
print("interpolation:", interpolation)
overall_interpolation_error = np.array([])
overall_interpolation_offset = np.array([])
for unit in units:
if len(error_by_interp_and_unit[interpolation][unit]["error"]) > 0:
print(f"unit {unit}:")
print(f"\terror: {np.mean(error_by_interp_and_unit[interpolation][unit]['error']):.3f} +/- {np.std(error_by_interp_and_unit[interpolation][unit]['error']):.3f}")
print(f"\toffset: {np.mean(error_by_interp_and_unit[interpolation][unit]['offset']):.3f} ms +/- {np.std(error_by_interp_and_unit[interpolation][unit]['offset']):.3f} ms")
overall_interpolation_error = np.concatenate((overall_interpolation_error, error_by_interp_and_unit[interpolation][unit]["error"]))
overall_interpolation_offset = np.concatenate((overall_interpolation_offset, error_by_interp_and_unit[interpolation][unit]["offset"]))
print("Overall:")
print("\terror:", np.mean(overall_interpolation_error), "+/-", np.std(overall_interpolation_error))
print("\toffset:", np.mean(overall_interpolation_offset), " ms +/-", np.std(overall_interpolation_offset), "ms")
print()
def report_multirun_time(dataset, experiment, num_elements=2, interpolations=np.array([0, 10]), seeds=np.arange(1, 6)):
"""
Report distance between dictionaries over multiple runs of the same experiment.
"""
type_exp = "multi"
if experiment == 'sandbox':
type_exp = "single"
exp_path = os.path.join("outputs", f"{dataset}_experiments", f"experiment_{experiment}", type_exp)
time_csc_by_interp = {interpolation: [] for interpolation in interpolations}
time_cdu_by_interp = {interpolation: [] for interpolation in interpolations}
print("Averaged runtime by interpolation:")
# Iterate over each interpolation value
for interpolation in interpolations:
# Average over seed values
for seed in seeds:
time = np.load(os.path.join(exp_path, f"interp_{num_elements}_{interpolation}", f"seed_{seed}", "time.npz"))
time_csc_by_interp[interpolation].append(time["time_csc"][0])
time_cdu_by_interp[interpolation].append(time["time_update"][0])
print("interpolation:", interpolation)
print(f"\tCSC mean time: {np.mean(time_csc_by_interp[interpolation]):.3f} s +/- {np.std(time_csc_by_interp[interpolation]):.3f} s")
print(f"\tCDU mean time: {np.mean(time_cdu_by_interp[interpolation]):.3f} s +/- {np.std(time_cdu_by_interp[interpolation]):.3f} s")
print()
def report_multi_run_results(experiment, num_elements=2, interpolations=np.array([0, 10]), seeds=np.arange(1, 6), dataset="synth"):
report_average_multi_run_perfs(dataset, experiment, metric="accuracy", num_elements=num_elements, interpolations=interpolations, seeds=seeds)
print()
print("--------------------------")
report_average_multi_run_perfs(dataset, experiment, metric="precision", num_elements=num_elements, interpolations=interpolations, seeds=seeds)
print()
print("--------------------------")
report_average_multi_run_perfs(dataset, experiment, metric="recall", num_elements=num_elements, interpolations=interpolations, seeds=seeds)
print()
print("--------------------------")
report_multirun_dict_error(dataset, experiment, num_elements=num_elements, interpolations=interpolations, seeds=seeds)
print()
print("--------------------------")
report_multirun_time(dataset, experiment, num_elements=num_elements, interpolations=interpolations, seeds=seeds)