-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy path05_2_audio.py
199 lines (138 loc) · 4.13 KB
/
05_2_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# -*- coding: utf-8 -*-
import sys
import matplotlib.pyplot as plt
import wave
import scipy.io.wavfile
import numpy
import numpy.fft
import math
import xml.etree.ElementTree as et
import os
import os.path
from lib import smooth
# http://onlamp.com/pub/a/python/2001/01/31/numerically.html?page=1
# http://xoomer.virgilio.it/sam_psy/psych/sound_proc/sound_proc_python.html
# dB: http://www.dsprelated.com/showmessage/29246/1.php
# RMS: http://www.opamp-electronics.com/tutorials/measurements_of_ac_magnitude_2_01_03.htm
# http://www.audioforums.com/forums/showthread.php?11942-extract-volume-out-of-wave-file&p=54594#post54594
def main():
os.chdir(sys.argv[1])
f_out = open("smooth_audio.txt", "w")
tree = et.parse("project.xml")
movie = tree.getroot()
path = movie.attrib["path"]
path = os.path.dirname(path)
fps = float( movie.attrib["fps"] )
os.chdir(path)
file = os.path.join(path, "audio_trimmed.wav")
print file
f = wave.open(file, "rb")
bit = f.getsampwidth() * 8
print bit, "bit" # usually: signed 16 bit [-32768, 32767]
f.close()
rate, data = scipy.io.wavfile.read(file)
print rate, "hz"
# http://en.wikipedia.org/wiki/Sound_level_meter#Exponentially_averaging_sound_level_meter
chunk = rate / 8 #25
#print max(data)
#print min(data)
max = numpy.max( numpy.absolute(data) )
"""fft = numpy.fft.rfft(data, chunk)
fft = numpy.absolute(fft)
print fft
plt.plot(fft)
plt.show()"""
data_db = numpy.array([])
data_rms = numpy.array([])
for i in range(len(data) / chunk):
values = numpy.array( data[i*chunk : (i+1)*chunk] )
# normalize [0, 1]
#values = values / 2**(bit-1)
values = values / float(max)
#values = values * float(1) # why do I need that?
# root mean square
values = numpy.power(values, 2)
rms = numpy.sqrt( numpy.mean(values) )
data_rms = numpy.append(data_rms, rms)
# decibel
db = 20 * numpy.log10( (1e-20+rms) ) #/ float(max)
data_db = numpy.append(data_db, db)
#plt.ylim(-60, 0)
#plt.plot( smooth(data_rms/numpy.max(data_rms), window_len=rate/(fps*2)), "k-" )
#plt.plot(smooth(data_db, window_len=rate/fps), "g-")
smooth_db = 1 + smooth(data_db, window_len=rate/(fps*3)) / (60.0) # [0..1]
plt.ylim(0, 1)
plt.plot(smooth_db, "g-")
for item in smooth_db:
if item < 0:
item = 0
f_out.write("%f\n" % float(item))
f_out.close()
#plt.plot(data_db)
plt.show()
#for i in range(len(data) / (rate*250)):
# plt.specgram(data[i*rate*250 : (i+1)*rate*250], Fs = rate, scale_by_freq=True, sides='default')
# plt.show()
"""def show_wave_n_spec(speech):
spf = wave.open(speech, "r")
#sound_info = spf.readframes(-1)
sound_info = spf.readframes(1000000)
sound_info = numpy.fromstring(sound_info, 'Int16')
f = spf.getframerate()
plt.subplot(211)
plt.plot(sound_info)
plt.title('Wave from and spectrogram of %s' % sys.argv[1])
plt.subplot(212)
spectrogram = plt.specgram(sound_info, Fs = f, scale_by_freq=True, sides='default')
plt.show()
spf.close()
show_wave_n_spec(fil)"""
"""
f = wave.open(file, "rb")
wav_params = f.getparams()
print wav_params
#sample_rate = wav_params[2]
sample_rate = f.getframerate()
volumes = []
chunk_size = 10 #sample_rate / 25
while True:
data_string = f.readframes(chunk_size)
unpacked = struct.unpack("%dB" % len(data_string), data_string)
if not unpacked:
break
chunk = numpy.array(unpacked)
#print chunk
chunk = pow(abs(chunk), 2)
rms = math.sqrt(chunk.mean())
#print rms
#db = 10 * math.log10(1e-20 + rms)
#print db
volumes.append(rms)
#plt.plot(volumes)
plt.specgram(volumes)
plt.show()
f.close()"""
"""
values = []
for i in range(len(data) / chunk):
x =
db = 20 * numpy.log10(1e-20 + numpy.absolute(x))
mean = numpy.mean(db)
values.append(mean)
values = numpy.array(values)
smooth_values = smooth(values, window_len=rate/5)
smooth_values2 = smooth(values, window_len=rate/10)
plt.ylim(-100, 100)
plt.plot(smooth_values)
plt.plot(smooth_values2, "r-")
plt.show()
"""
"""import numpy.fft
spectrum = numpy.fft.fft(data[:10000])
frequencies = numpy.fft.fftfreq(len(data[:10000]))
plt.plot(frequencies,spectrum)
plt.show()"""
# #########################
if __name__ == "__main__":
main()
# #########################