-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07_transformer_block_residual.py
286 lines (235 loc) · 9.3 KB
/
07_transformer_block_residual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
batch_size = 32 # number of sequences in a batch
block_size = 8 # maximum context (max sequence length for prediction)
max_iters = 5000
eval_interval = 500
learning_rate = 1e-3
eval_iters = 200
n_embed = 32
n_heads = 4
device = torch.device('mps')
print(device)
torch.manual_seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# unique characters
chars = sorted(list(set(text)))
# vocabulary size
vocab_size = len(chars)
# mappings from char to integers and visa versa
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
# encode a string to a list of integers
def encode(s): return [stoi[c] for c in s]
# decode a list of integers into a string
def decode(l): return ''.join([itos[i] for i in l])
# train and validation splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first 90% of the data
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == 'train' else val_data
# draw the starting indices of the sequences in a batch
ix = torch.randint(len(data) - block_size, (batch_size, ))
x = torch.stack([data[i: i + block_size] for i in ix])
y = torch.stack([data[i + 1: i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
# The @torch.no_grad() decorator is used as a context manager in here
# to temporarily disable gradient computation (and back propagation) during
# the execution of the estimate_loss function.
@torch.no_grad()
def estimate_loss(model):
'''Averages out the loss over multiple batches.
'''
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
'''Single head of self-attention'''
def __init__(self, head_size):
super().__init__()
self.query = nn.Linear(n_embed, head_size, bias=False)
self.key = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
# we want a lower triangular matrix variable but since it not
# a model parameters, pytorch requires assignmet w/ registered_buffer
self.register_buffer('tril', torch.tril(torch.ones(block_size,
block_size)))
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.key(x)
# compute attention scores / affinities: (B,T,C)@(B,C,T)--->(B,T,T)
weights = q @ k.transpose(-2, -1) * C**-0.5
# make it a decoder block (a token only talks with the past)
weights = weights.masked_fill(self.tril[:T, :T] == 0,
float('-inf'))
weights = F.softmax(weights, dim=-1)
v = self.value(x)
out = weights @ v
return out
class MultiHeadedAttention(nn.Module):
'''Multiple heads of self-attention in parallel'''
def __init__(self, n_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(n_heads)])
self.proj = nn.Linear(n_embed, n_embed)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
# the projection is a linear transform of the outcome of the sa layer
out = self.proj(out)
return out
class FeedForward(nn.Module):
'''a simple linear layer followed by non-linearity. Works on
per-token level. The attetion does the communication. This
does the computations.'''
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed), # paper uses 4x for inner layer
nn.ReLU(),
# projection layer going back into residual pathway
nn.Linear(4 * n_embed, n_embed)
)
def forward(self, x):
return self.net(x)
class TransformerBlock(nn.Module):
'''Transformer block: communication followed by computation.
Aka message passing between tokens then computation.'''
def __init__(self, n_embed, n_heads):
super().__init__()
head_size = n_embed // n_heads
self.sa = MultiHeadedAttention(n_heads, head_size)
self.ffwd = FeedForward(n_embed)
def forward(self, x):
'''include residual connections.'''
x = x + self.sa(x) # fork off, do some computations, then come back
x = x + self.ffwd(x) # fork off, do some computations, then come back
return x
class GPTLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# get token embeddings; each token gets an embedding vector
self.token_embedding_table = nn.Embedding(num_embeddings=vocab_size,
embedding_dim=n_embed)
# get position embeddings;
# each position [0, block_size -1] gets an embedding vector
self.position_embedding_table = nn.Embedding(block_size, n_embed)
# transformer block
self.tblocks = nn.Sequential(
TransformerBlock(n_embed, n_heads),
TransformerBlock(n_embed, n_heads),
TransformerBlock(n_embed, n_heads)
)
# need a linear layer to get logits; lm_head for language model head
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
# idx and targets are both (B,T) tensor of integers
B, T = idx.shape
token_embeddings = self.token_embedding_table(idx) # (B,T,C=n_embed)
# integers 0 to T-1 get embedded through the position_embedding_table
position_embeddings = self.position_embedding_table(
torch.arange(T, device=device)) # (T,C=n_embed)
x = token_embeddings + position_embeddings # (B,T,C) from broadcasting
x = self.tblocks(x) # (B,T,C)
logits = self.lm_head(x) # (B, T, C=vocab_size)
B, T, C = logits.shape
if targets is None:
loss = None
else:
# torch.nn.functional.cross_entropy requires size (batch_size,C)
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
'''Take the idx sequence which is (B, T) and extend it
sequentially in the time dimention to (B, T+1), (B, T+2), ...
and up to max_new_tokens.
'''
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens b/c our positional
# encoding only works for up to block_size
idx_crop = idx[:, -block_size:]
# idx is (B, T) arry of indices in the current context
logits, loss = self(idx_crop)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilies
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1)
return idx
model = GPTLanguageModel()
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0 or iter == max_iters - 1:
losses = estimate_loss(model)
print(
f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(model.generate(context, max_new_tokens=500)[0].tolist()), '\n')
"""
Output below:
step 0: train loss 4.6297, val loss 4.6265
step 500: train loss 2.4123, val loss 2.4073
step 1000: train loss 2.3219, val loss 2.3201
step 1500: train loss 2.2477, val loss 2.2609
step 2000: train loss 2.2063, val loss 2.2366
step 2500: train loss 2.1628, val loss 2.1964
step 3000: train loss 2.1460, val loss 2.2043
step 3500: train loss 2.1345, val loss 2.1705
step 4000: train loss 2.0939, val loss 2.1651
step 4500: train loss 2.0778, val loss 2.1528
step 4999: train loss 2.0669, val loss 2.1338
Upast.
MENENTESS:
Wathe.
Oy homein.
MING ULIE:
If extaglel
My me goock yrose dave?
LO, rifely scoous of in pray way an home
but, fasickes
Tok, as liht thy
Bing?
MOMEO: Natie,
Is letst that!' crive of to gartly our must fair thou her't.
Ladw'ly ene?
LUFRE:
That of they father,
Buch Diles asureis, no rukin
best here?
KING EDWARD:
The love yougmeroe, do of that, you keef librach
GLOLast bey,
Thou of of frott dapreth, all this reatand,
Ans the is Kervoyed our a man:
Bud now thich treig it bey
"""