-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpreprocess.py
142 lines (116 loc) · 4.85 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import os
from pathlib import Path
from config import hparams as hp
if hp.dataset in ["LibriTTS", "VCTK", "LJSpeech"]:
from data import functional as F
else:
raise NotImplementedError(
"You should specify the dataset in hparams.py\
and write a corresponding file in data/"
)
class Preprocessor:
def __init__(self, args):
self.args = args
self.dataset = hp.dataset
self.mfa_path = hp.mfa_path
self.wav_dir = Path(args.wav_dir).resolve()
self.txt_dir = Path(args.txt_dir).resolve()
self.out_dir = Path(args.save_dir).resolve()
def exec(self):
self.print_message()
key_input = ""
while key_input not in ["y", "Y", "n", "N"]:
key_input = input("Proceed? ([y/n])? ")
if key_input in ["y", "Y"]:
self.make_output_dirs(force=True)
# 1. Prepare MFA
if self.args.prepare_mfa:
print("[INFO] Preparing data for Montreal Force Alignmnet...")
self.prepare_mfa()
# 2. MFA
if self.args.mfa:
print("[INFO] Performing Montreal Force Alignment...")
self.mfa()
# 3. Create Dataset
if self.args.create_dataset:
print("[INFO] Creating Training and Validation Dataset...")
self.create_dataset()
def print_message(self):
print("\n")
print("------ Preprocessing ------")
print(f"* Dataset : {self.dataset}")
print(f"* Data(wav) path : {self.wav_dir}")
print(f"* Data(txt) path : {self.txt_dir}")
print(f"* Output path : {self.out_dir}")
print("\n")
print(" [INFO] The following will be executed:")
if self.args.prepare_mfa:
print("* Preparing data for Montreal Force Alignment")
if self.args.mfa:
print("* Montreal Force Alignmnet")
if self.args.create_dataset:
print("* Creating Training Dataset")
print("\n")
def make_output_dirs(self, force=False):
out_dir = self.out_dir
if self.args.mfa:
self.mfa_out_dir = os.path.join(out_dir, "TextGrid")
os.makedirs(self.mfa_out_dir, exist_ok=force)
self.mfa_data_dir = os.path.join(out_dir, "mfa_data")
os.makedirs(self.mfa_data_dir, exist_ok=force)
self.mel_out_dir = os.path.join(out_dir, "mel")
os.makedirs(self.mel_out_dir, exist_ok=force)
self.ali_out_dir = os.path.join(out_dir, "alignment")
os.makedirs(self.ali_out_dir, exist_ok=force)
self.f0_out_dir = os.path.join(out_dir, "f0")
os.makedirs(self.f0_out_dir, exist_ok=force)
self.energy_out_dir = os.path.join(out_dir, "energy")
os.makedirs(self.energy_out_dir, exist_ok=force)
# === 1. Preapare Algin === #
def prepare_mfa(self):
F.prepare_mfa(self.wav_dir, self.txt_dir, self.mfa_data_dir)
# === 2. MFA === #
def mfa(self):
out_dir = self.out_dir
mfa_path = self.mfa_path
mfa_in_dir = self.mfa_data_dir
mfa_out_dir = os.path.join(out_dir, "TextGrid")
mfa_bin_path = os.path.join(mfa_path, "bin", "mfa_align")
mfa_pretrain_path = os.path.join(
mfa_path, "pretrained_models", "librispeech-lexicon.txt"
)
cmd = f"{mfa_bin_path} {mfa_in_dir} {mfa_pretrain_path} english {mfa_out_dir} -j 8 -v"
os.system(cmd)
# === 3. Create Dataset === #
def create_dataset(self):
"""
* metadata.json will be created
* mel, energy, f0,... will be created
"""
in_dir = self.wav_dir
out_dir = self.out_dir
F.build_dataset(in_dir, out_dir)
def main(args):
P = Preprocessor(args)
P.exec()
if __name__ == "__main__":
"""
e.g.
# LJSpeech #
* run ./script/organizeLJ.py first
* python preprocess.py /storage/tts2021/LJSpeech-organized/wavs /storage/tts2021/LJSpeech-organized/txts ./processed/LJSpeech --prepare_mfa --mfa --create_dataset
# LibriTTS #
* python preprocess.py /storage/tts2021//LibriTTS/train-clean-360 /storage/tts2021//LibriTTS/train-clean-360 ./processed/LibriTTS --prepare_mfa --mfa --create_dataset
# VCTK #
* python preprocess.py /storage/tts2021/VCTK-Corpus/wav48/ /storage/tts2021/VCTK-Corpus/txt ./processed/VCTK --prepare_mfa --mfa --create_dataset
"""
parser = argparse.ArgumentParser()
parser.add_argument("wav_dir", type=str)
parser.add_argument("txt_dir", type=str)
parser.add_argument("save_dir", type=str)
parser.add_argument("--prepare_mfa", action="store_true", default=False)
parser.add_argument("--mfa", action="store_true", default=False)
parser.add_argument("--create_dataset", action="store_true", default=False)
args = parser.parse_args()
main(args)