-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_dropo.py
132 lines (91 loc) · 4.22 KB
/
test_dropo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""Test of DROPO
Install the random-envs package (https://github.com/gabrieletiboni/random-envs)
to test this script on the OpenAI Gym Hopper environment. A dataset of target
trajectories from the Hopper environment has already been collected offline
by a semi-converged policy and made available in datasets/ dir.
Examples:
[Quick test] python test_dropo.py --env RandomHopper-v0 --sparse-mode -n 10 -l 1 --budget 1000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs
[Advanced test] python test_dropo.py --env RandomHopper-v0 -n 2 -l 1 --budget 5000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs --now 10
[Unmodeled environment test] python test_dropo.py --env RandomHopperUnmodeled-v0 -n 2 -l 1 --budget 5000 -av --epsilon 1e-3 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs --now 10
"""
import glob
import sys
import pdb
from datetime import datetime
import numpy as np
import gym
try:
import random_envs
except ImportError as e:
raise error.DependencyNotInstalled(f"Install random-envs from https://github.com/gabrieletiboni/random-envs to test DROPO on the OpenAI gym Hopper environment")
from dropo import Dropo
from utils import *
def main():
args = parse_args_dropo()
set_seed(args.seed)
sim_env = gym.make(args.env)
print('State space:', sim_env.observation_space)
print('Action space:', sim_env.action_space)
print('Initial dynamics:', sim_env.get_task())
print('\nARGS:', vars(args))
observations = np.load(glob.glob(os.path.join(args.dataset, '*_observations.npy'))[0])
next_observations = np.load(glob.glob(os.path.join(args.dataset, '*_nextobservations.npy'))[0])
actions = np.load(glob.glob(os.path.join(args.dataset, '*_actions.npy'))[0])
terminals = np.load(glob.glob(os.path.join(args.dataset, '*_terminals.npy'))[0])
T = {'observations': observations, 'next_observations': next_observations, 'actions': actions, 'terminals': terminals }
# Initialize dropo
dropo = Dropo(sim_env=sim_env,
t_length=args.l,
scaling=args.scaling,
seed=args.seed,
sync_parall=(not args.no_sync_parall))
# Load target offline dataset
dropo.set_offline_dataset(T, n=args.n_trajectories, sparse_mode=args.sparse_mode)
# Run DROPO
(best_bounds,
best_score,
elapsed,
learned_epsilon) = dropo.optimize_dynamics_distribution(opt=args.opt,
budget=args.budget,
additive_variance=args.additive_variance,
epsilon=args.epsilon,
sample_size=args.sample_size,
now=args.now,
learn_epsilon=args.learn_epsilon,
normalize=args.normalize,
logstdevs=args.logstdevs)
"""
OUTPUT RESULTS
"""
print('\n-----------')
print('RESULTS\n')
print('ARGS:', vars(args), '\n\n')
print('Best means and st.devs:\n---------------')
print(dropo.pretty_print_bounds(best_bounds),'\n')
if learned_epsilon is not None:
print('Best epsilon:', learned_epsilon)
print('Best score (log likelihood):', best_score)
if args.sparse_mode:
print('MSE:', dropo.MSE(dropo.get_means(best_bounds)))
else:
print('MSE:', dropo.MSE_trajectories(dropo.get_means(best_bounds)))
print('Elapsed:', round(elapsed/60, 4), 'min')
if not args.no_output: # Output results to file
make_dir(args.output_dir)
with open(os.path.join(args.output_dir, '')+'dropo_n'+str(args.n_trajectories)+'_l'+str(args.l)+'_'+datetime.now().strftime("%Y%m%d_%H-%M-%S")+'.txt', 'a', encoding='utf-8') as file:
print('-----------', file=file)
print('RESULTS\n', file=file)
print('ARGS:', vars(args), '\n\n', file=file)
print('Best means and st.devs:\n---------------', file=file)
print(dropo.pretty_print_bounds(best_bounds),'\n', file=file)
if learned_epsilon is not None:
print('Best epsilon:', learned_epsilon, file=file)
print('Best score (log likelihood):', best_score, file=file)
if args.sparse_mode:
print('MSE:', dropo.MSE(dropo.get_means(best_bounds)), file=file)
else:
print('MSE:', dropo.MSE_trajectories(dropo.get_means(best_bounds)), file=file)
print('Elapsed:', round(elapsed/60, 4), 'min', file=file)
return
if __name__ == '__main__':
main()