-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
1024 lines (906 loc) · 47.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import random
from heapq import heappush, nlargest
from onmt.trainer import Trainer
from onmt.translate import GreedySearch
from onmt.utils.logging import logger
import onmt
import torch
import traceback
import numpy as np
from grammer.tokenizer import SimCodeTokenizer
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
from reward import state_transition_reward
def tile(a, dim, n_tile):
init_dim = a.size(dim)
repeat_idx = [1] * a.dim()
repeat_idx[dim] = n_tile
a = a.repeat(*(repeat_idx))
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
return torch.index_select(a, dim, order_index)
class SimMLETrainer(Trainer):
def __init__(self, model, train_loss, valid_loss, optim, translator, translation_builder, score_fn=None,
trunc_size=0, shard_size=32, norm_method="sents",
accum_count=[1], accum_steps=[0], n_gpu=1, gpu_rank=1, gpu_verbose_level=0, report_manager=None,
with_align=False, model_saver=None, average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], dropout_steps=[0], source_noise=None, metrics=None):
super().__init__(model, train_loss, valid_loss, optim, trunc_size, shard_size, norm_method, accum_count,
accum_steps, n_gpu, gpu_rank, gpu_verbose_level, report_manager, with_align, model_saver,
average_decay, average_every, model_dtype, earlystopper, dropout, dropout_steps, source_noise)
self.metrics = [] if metrics is None else metrics
self.translator = translator
self.translation_builder = translation_builder
self.score_fn = score_fn
def train(self, train_iter, train_steps, src_vocab=None, save_checkpoint_steps=5000, valid_iter=None,
valid_steps=10000, stats_cls=None):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: A generator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
The gathered statistics.
"""
if not self.metrics:
logger.info('No specific success metric mentioned')
if valid_iter is None:
logger.info('Start training loop without validation...')
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
if stats_cls is None:
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
else:
total_stats = stats_cls()
report_stats = stats_cls()
self._start_report_manager(start_time=total_stats.start_time)
all_metrics = {}
for i, (batches, normalization) in enumerate(
self._accum_batches(train_iter)):
step = self.optim.training_step
# UPDATE DROPOUT
self._maybe_update_dropout(step)
if self.gpu_verbose_level > 1:
logger.info("GpuRank %d: index: %d", self.gpu_rank, i)
if self.gpu_verbose_level > 0:
logger.info("GpuRank %d: reduce_counter: %d \
n_minibatch %d"
% (self.gpu_rank, i + 1, len(batches)))
if self.n_gpu > 1:
normalization = sum(onmt.utils.distributed
.all_gather_list
(normalization))
self._gradient_accumulation(
batches, normalization, total_stats,
report_stats)
if self.average_decay > 0 and i % self.average_every == 0:
self._update_average(step)
report_stats = self._maybe_report_training(
step, train_steps,
self.optim.learning_rate(),
report_stats)
if valid_iter is not None and step % valid_steps == 0:
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: validate step %d'
% (self.gpu_rank, step))
valid_stats = self.validate(
valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
all_metrics[str(i)] = []
for metric in self.metrics:
all_metrics[str(i)].append(metric.eval())
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: gather valid stat \
step %d' % (self.gpu_rank, step))
valid_stats = self._maybe_gather_stats(valid_stats)
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: report stat step %d'
% (self.gpu_rank, step))
self._report_step(self.optim.learning_rate(),
step, valid_stats=valid_stats)
# Run patience mechanism
if self.earlystopper is not None:
self.earlystopper(valid_stats, step)
# If the patience has reached the limit, stop training
if self.earlystopper.has_stopped():
break
if (self.model_saver is not None
and (save_checkpoint_steps != 0
and step % save_checkpoint_steps == 0)):
self.model_saver.save(step, moving_average=self.moving_average)
if train_steps > 0 and step >= train_steps:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats, all_metrics
def validate(self, valid_iter, src_vocab, moving_average=None, stats_cls=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if self.optim._fp16 == "legacy" \
else avg.data
# Set model in validating mode.
logger.info("MLE pre-trained model validation:")
valid_model.eval()
with torch.no_grad():
if stats_cls is None:
stats = onmt.utils.Statistics()
else:
stats = stats_cls()
# reset metric
for metric in self.metrics:
metric.reset()
for batch in valid_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
tgt = batch.tgt
# F-prop through the model.
outputs, attns = valid_model(src, tgt, src_lengths,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, outputs, attns)
trans_batch = self.translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.translation_builder.from_batch(trans_batch)
targets = []
preds = []
for trans in translations:
max_score = 0
pred_sent = trans.pred_sents[0]
if self.score_fn is not None:
for pred_seq in trans.pred_sents:
self.score_fn.reset()
self.score_fn.update([pred_seq], [trans.gold_sent])
score = self.score_fn.eval()
if score > max_score:
pred_sent = pred_seq
max_score = score
preds.append(pred_sent)
targets.append(trans.gold_sent)
for metric in self.metrics:
metric.update(preds, targets)
# Update statistics.
stats.update(batch_stats)
metrics_txt = ",".join(f"{metric}" for metric in self.metrics)
logger.info(f"Validation metrics: {metrics_txt}")
if moving_average:
for param_data, param in zip(model_params_data,
self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
return stats
def _gradient_accumulation(self, true_batches, normalization, total_stats,
report_stats):
if self.accum_count > 1:
self.optim.zero_grad()
for k, batch in enumerate(true_batches):
target_size = batch.tgt.size(0)
# Truncated BPTT: reminder not compatible with accum > 1
if self.trunc_size:
trunc_size = self.trunc_size
else:
trunc_size = target_size
batch = self.maybe_noise_source(batch)
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
if src_lengths is not None:
report_stats.n_src_words += src_lengths.sum().item()
tgt_outer = batch.tgt
bptt = False
for j in range(0, target_size - 1, trunc_size):
# 1. Create truncated target.
tgt = tgt_outer[j: j + trunc_size]
# 2. F-prop all but generator.
if self.accum_count == 1:
self.optim.zero_grad()
outputs, attns = self.model(src, tgt, src_lengths, bptt=bptt,
with_align=self.with_align)
bptt = True
# 3. Compute loss.
try:
loss, batch_stats = self.train_loss(
batch,
outputs,
attns,
normalization=normalization,
shard_size=self.shard_size,
trunc_start=j,
trunc_size=trunc_size)
if loss is not None:
self.optim.backward(loss)
total_stats.update(batch_stats)
report_stats.update(batch_stats)
except Exception:
traceback.print_exc()
logger.info("At step %d, we removed a batch - accum %d",
self.optim.training_step, k)
# 4. Update the parameters and statistics.
if self.accum_count == 1:
# Multi GPU gradient gather
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
# If truncated, don't backprop fully.
# TO CHECK
# if dec_state is not None:
# dec_state.detach()
if self.model.decoder.state is not None:
self.model.decoder.detach_state()
# in case of multi step gradient accumulation,
# update only after accum batches
if self.accum_count > 1:
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
class SimStateScoreTrainer(Trainer):
def __init__(self, argmax_model, model, argmax_translator, translator, argmax_translation_builder,
translation_builder, valid_translator, valid_builder,
train_loss, valid_loss, optim, tgt_vocab, tgt_padding_token, reward_function, score_fn=None, trunc_size=0,
shard_size=32, norm_method="sents",
accum_count=[1], accum_steps=[0], n_gpu=1, gpu_rank=1, gpu_verbose_level=0, report_manager=None,
with_align=False, model_saver=None, average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], dropout_steps=[0], source_noise=None, metrics=None):
super().__init__(model, train_loss, valid_loss, optim, trunc_size, shard_size, norm_method, accum_count,
accum_steps, n_gpu, gpu_rank, gpu_verbose_level, report_manager, with_align, model_saver,
average_decay, average_every, model_dtype, earlystopper, dropout, dropout_steps, source_noise)
self.avg_score = 0
self.reward_function = reward_function
self.metrics = [] if metrics is None else metrics
self.translator = translator
self.translation_builder = translation_builder
self.valid_translator = valid_translator
self.valid_builder = valid_builder
self.score_fn = score_fn
self.argmax_model = argmax_model
self.argmax_translator = argmax_translator
self.argmax_translation_builder = argmax_translation_builder
self.tgt_vocab = tgt_vocab
self.tgt_padding = tgt_padding_token
def train(self, train_iter, train_steps, src_vocab=None, save_checkpoint_steps=5000, valid_iter=None,
valid_steps=10000, stats_cls=None):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: A generator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
The gathered statistics.
"""
step = 0
if not self.metrics:
logger.info('No specific success metric mentioned')
if valid_iter is None:
logger.info('Start training loop without validation...')
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
if stats_cls is None:
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
else:
total_stats = stats_cls()
report_stats = stats_cls()
self._start_report_manager(start_time=total_stats.start_time)
all_metrics = {}
self.validate(
valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
src_action_adv = []
for batch in train_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
if src_lengths is not None:
report_stats.n_src_words += src_lengths.sum().item()
with torch.no_grad():
#get the sim score for the argmax as a baseline for the sample
trans_batch = self.argmax_translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
argmax_translations = self.argmax_translation_builder.from_batch(trans_batch)
argmax_sim_values = [self.reward_function(translation.pred_sents[0],translation.gold_sent)
for translation in argmax_translations]
# get the beam search top k and calculate sim_score for the actions
trans_batch = self.translator.translate_batch(batch, [src_vocab], False)
translations = self.translation_builder.from_batch(trans_batch)
for i, translations_for_topk in enumerate(translations):
ref_code = translations_for_topk.gold_sent
src_raw = translations_for_topk.src_raw
argmax_reward = argmax_sim_values[i]
rewards = [(pred_translation, float(self.reward_function(ref_code, pred_translation))) for
pred_translation in translations_for_topk.pred_sents]
top_trans = sorted(rewards, key=lambda x: x[1], reverse=True)
for pred_translation, reward in top_trans[:4]:
if reward < min(self.avg_score + 0.02, 1.0) or reward - argmax_reward < 0:
#print(f"reward is {reward} skip")
continue
actions_tensor = torch.tensor(
[2] + [self.tgt_vocab.stoi[token] for token in pred_translation] + [1])
src_tensor = torch.tensor([src_vocab.stoi[token] for token in src_raw])
src_action_adv.append((src_tensor, actions_tensor, reward ))
# sort by src length
if len(src_action_adv) < 32:
continue
random.shuffle(src_action_adv)
src_action_adv = src_action_adv[:32]
src_action_adv = sorted(src_action_adv, key=lambda x: x[0].shape[0], reverse=True)
src_data = [item[0] for item in src_action_adv]
tgt_actions = [item[1] for item in src_action_adv]
advs = torch.FloatTensor([item[2] for item in src_action_adv]).to("cuda")
with torch.set_grad_enabled(True):
try:
self.model.train()
self.optim.zero_grad()
src_lengths_eps = torch.tensor([src_tensor.shape[0] for src_tensor in src_data]).to("cuda")
batch_size = src_lengths_eps.shape[0]
src_eps = pad_sequence(src_data, padding_value=1, batch_first=True).to("cuda")
tgt_eps = pad_sequence(tgt_actions, padding_value=1, batch_first=True).to("cuda")
self.optim.zero_grad()
outputs, attns = self.model(src_eps.permute(1, 0).view(-1, batch_size, 1), tgt_eps.permute(1, 0).view(-1, batch_size, 1), src_lengths_eps, bptt=False,
with_align=self.with_align)
h_size = outputs.size(2)
bottled_output = outputs.permute(1,0,2).reshape(-1, h_size)
probs = self.model.generator(bottled_output)
#output_size = probs.size(-1)
indecies = tgt_eps
indecies = indecies[:, 1:]
log_prob = -F.nll_loss(
probs,
indecies.reshape(-1),
ignore_index=1,
reduction='none'
).view(batch_size, -1).mean(dim=-1)
reward = advs.reshape(-1, 1)
loss = (log_prob * -reward).mean()
loss.backward()
self.optim.step()
except Exception as e:
print(e)
continue
src_action_adv = []
step += 1
if step % 2 == 0:
logger.info(f"Training step {step}")
if valid_iter is not None and step % valid_steps == 0:
self.model.eval()
valid_stats = self.validate(
valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
if step == 600:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats, all_metrics
def validate(self, valid_iter, src_vocab, moving_average=None, stats_cls=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if self.optim._fp16 == "legacy" \
else avg.data
# Set model in validating mode.
valid_model.eval()
with torch.no_grad():
if stats_cls is None:
stats = onmt.utils.Statistics()
else:
stats = stats_cls()
# reset metric
for metric in self.metrics:
metric.reset()
for batch in valid_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
tgt = batch.tgt
# F-prop through the model.
outputs, attns = valid_model(src, tgt, src_lengths,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, outputs, attns)
trans_batch = self.valid_translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.valid_builder.from_batch(trans_batch)
targets = []
preds = []
avg_reward = 0
counter = 0
for trans in translations:
max_score = 0
pred_sent = trans.pred_sents[0]
reward = self.reward_function(trans.gold_sent, pred_sent)
if reward >= 0:
avg_reward += reward
counter += 1
preds.append(pred_sent)
targets.append(trans.gold_sent)
avg_reward /= counter
self.avg_score = avg_reward
for metric in self.metrics:
metric.update(preds, targets)
# Update statistics.
stats.update(batch_stats)
#if avg_score > self.avg_score:
metrics_txt = ",".join(f"{metric}" for metric in self.metrics)
logger.info(f"Validation metrics: {metrics_txt}")
if moving_average:
for param_data, param in zip(model_params_data,
self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
class SimStateScoreTrainerV2(Trainer):
def __init__(self, argmax_model, model, argmax_translator, translator, argmax_translation_builder,
translation_builder, valid_translator, valid_builder,
train_loss, valid_loss, optim, tgt_vocab, tgt_padding_token, score_fn=None, trunc_size=0,
shard_size=32, norm_method="sents",
accum_count=[1], accum_steps=[0], n_gpu=1, gpu_rank=1, gpu_verbose_level=0, report_manager=None,
with_align=False, model_saver=None, average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], dropout_steps=[0], source_noise=None, metrics=None):
super().__init__(model, train_loss, valid_loss, optim, trunc_size, shard_size, norm_method, accum_count,
accum_steps, n_gpu, gpu_rank, gpu_verbose_level, report_manager, with_align, model_saver,
average_decay, average_every, model_dtype, earlystopper, dropout, dropout_steps, source_noise)
self.metrics = [] if metrics is None else metrics
self.translator = translator
self.translation_builder = translation_builder
self.valid_translator = valid_translator
self.valid_builder = valid_builder
self.score_fn = score_fn
self.argmax_model = argmax_model
self.argmax_translator = argmax_translator
self.argmax_translation_builder = argmax_translation_builder
self.tgt_vocab = tgt_vocab
self.tgt_padding = tgt_padding_token
def train(self, train_iter, train_steps, src_vocab=None, save_checkpoint_steps=5000, valid_iter=None,
valid_steps=10000, stats_cls=None):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: A generator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
The gathered statistics.
"""
step = 0
if not self.metrics:
logger.info('No specific success metric mentioned')
if valid_iter is None:
logger.info('Start training loop without validation...')
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
if stats_cls is None:
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
else:
total_stats = stats_cls()
report_stats = stats_cls()
self._start_report_manager(start_time=total_stats.start_time)
all_metrics = {}
#self.validate(
# valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
src_action_adv = []
for batch in train_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
if src_lengths is not None:
report_stats.n_src_words += src_lengths.sum().item()
tgt_outer = batch.tgt
with torch.no_grad():
# get the beam search top k and calculate sim_score for the actions
trans_batch = self.translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.translation_builder.from_batch(trans_batch)
for i, translations_for_topk in enumerate(translations):
ref_code = translations_for_topk.gold_sent
src_raw = translations_for_topk.src_raw
#argmax_reward = argmax_sim_values[i]
#if argmax_reward > 0.98: continue
pos_counter = 0
rewards_pred = [ (pred_translation, state_transition_reward(ref_code, pred_translation)) for pred_translation in translations_for_topk.pred_sents]
rewards_pred = sorted(rewards_pred, key=lambda x: sum(x[1]), reverse=True)
for pred_translation, rewards in rewards_pred[:3]:
rewards = checkpoints_reward(ref_code, pred_translation)
actions_tensor = torch.tensor(
[2] + [self.tgt_vocab.stoi[token] for token in pred_translation] + [3])
src_tensor = torch.tensor([src_vocab.stoi[token] for token in src_raw])
src_action_adv.append((src_tensor, actions_tensor, rewards + [0]))
# sort by src length
if len(src_action_adv) < 1:
continue
random.shuffle(src_action_adv)
src_action_adv = src_action_adv[:128]
src_action_adv = sorted(src_action_adv, key=lambda x: x[0].shape[0], reverse=True)
src_data = [item[0] for item in src_action_adv]
tgt_actions = [item[1] for item in src_action_adv]
rewards = [item[2] for item in src_action_adv]
with torch.set_grad_enabled(True):
try:
self.model.train()
self.optim.zero_grad()
src_lengths_eps = torch.tensor([src_tensor.shape[0] for src_tensor in src_data]).to("cuda")
batch_size = src_lengths_eps.shape[0]
src_eps = pad_sequence(src_data, padding_value=1, batch_first=True).to("cuda")
tgt_eps = pad_sequence(tgt_actions, padding_value=1, batch_first=True).to("cuda")
padded_size = tgt_eps.size(-1)
rewards_padding = []
for rewards_token in rewards:
extra_padding = [0.]*(padded_size - len(rewards_token) - 1)
rewards_padding.append(torch.FloatTensor(rewards_token + extra_padding))
self.optim.zero_grad()
outputs, attns = self.model(src_eps.permute(1, 0).view(-1, batch_size, 1), tgt_eps.permute(1, 0).view(-1, batch_size, 1), src_lengths_eps, bptt=False,
with_align=self.with_align)
h_size = outputs.size(2)
bottled_output = outputs.permute(1, 0, 2).reshape(-1, h_size)
log_prob_v = self.model.generator(bottled_output)
indecies = tgt_eps
indecies = indecies[:, 1:]
indecies = indecies.reshape(-1)
adv_v = torch.cat(rewards_padding).reshape(-1, 1).to("cuda")
mask = torch.zeros_like(log_prob_v)
mask[indecies == 1, :] = 1.
log_prob_v = log_prob_v.masked_fill(mask.bool(), 0.)
lp_a = log_prob_v[range(indecies.size(0)), indecies]
log_prob_actions_v = adv_v * lp_a
loss_policy_v = -log_prob_actions_v.mean()
loss_v = loss_policy_v
loss_v.backward()
self.optim.step()
except Exception as e:
print(e)
continue
src_action_adv = []
step += 1
logger.info(f"Training step {step}")
if valid_iter is not None and step % valid_steps == 0:
self.model.eval()
valid_stats = self.validate(
valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats, all_metrics
def validate(self, valid_iter, src_vocab, moving_average=None, stats_cls=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if self.optim._fp16 == "legacy" \
else avg.data
# Set model in validating mode.
valid_model.eval()
with torch.no_grad():
if stats_cls is None:
stats = onmt.utils.Statistics()
else:
stats = stats_cls()
# reset metric
for metric in self.metrics:
metric.reset()
for batch in valid_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
tgt = batch.tgt
# F-prop through the model.
outputs, attns = valid_model(src, tgt, src_lengths,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, outputs, attns)
trans_batch = self.valid_translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.valid_builder.from_batch(trans_batch)
targets = []
preds = []
for trans in translations:
max_score = 0
pred_sent = trans.pred_sents[0]
if self.score_fn is not None:
for pred_seq in trans.pred_sents:
self.score_fn.reset()
self.score_fn.update([pred_seq], [trans.gold_sent])
score = self.score_fn.eval()
if score > max_score:
pred_sent = pred_seq
max_score = score
preds.append(pred_sent)
targets.append(trans.gold_sent)
for metric in self.metrics:
metric.update(preds, targets)
# Update statistics.
stats.update(batch_stats)
metrics_txt = ",".join(f"{metric}" for metric in self.metrics)
logger.info(f"Validation metrics: {metrics_txt}")
if moving_average:
for param_data, param in zip(model_params_data,
self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
class SimCheckpointRewardTrainer(Trainer):
def __init__(self, argmax_model, model, argmax_translator, translator, argmax_translation_builder,
translation_builder, valid_translator, valid_builder,
train_loss, valid_loss, optim, tgt_vocab, tgt_padding_token, score_fn=None, trunc_size=0,
shard_size=32, norm_method="sents",
accum_count=[1], accum_steps=[0], n_gpu=1, gpu_rank=1, gpu_verbose_level=0, report_manager=None,
with_align=False, model_saver=None, average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], dropout_steps=[0], source_noise=None, metrics=None):
super().__init__(model, train_loss, valid_loss, optim, trunc_size, shard_size, norm_method, accum_count,
accum_steps, n_gpu, gpu_rank, gpu_verbose_level, report_manager, with_align, model_saver,
average_decay, average_every, model_dtype, earlystopper, dropout, dropout_steps, source_noise)
self.metrics = [] if metrics is None else metrics
self.translator = translator
self.translation_builder = translation_builder
self.valid_translator = valid_translator
self.valid_builder = valid_builder
self.score_fn = score_fn
self.argmax_model = argmax_model
self.argmax_translator = argmax_translator
self.argmax_translation_builder = argmax_translation_builder
self.tgt_vocab = tgt_vocab
self.tgt_padding = tgt_padding_token
self.simcode_tokenizer = SimCodeTokenizer()
def train(self, train_iter, train_steps, src_vocab=None, save_checkpoint_steps=5000, valid_iter=None,
valid_steps=10000, stats_cls=None):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: A generator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
The gathered statistics.
"""
step = 0
if not self.metrics:
logger.info('No specific success metric mentioned')
if valid_iter is None:
logger.info('Start training loop without validation...')
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
if stats_cls is None:
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
else:
total_stats = stats_cls()
report_stats = stats_cls()
self._start_report_manager(start_time=total_stats.start_time)
all_metrics = {}
self.validate(
valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
src_action_adv = []
for i, (batches, normalization) in enumerate(
self._accum_batches(train_iter)):
for k, batch in enumerate(batches):
# print("Start to get data")
# get the beam search top k and calculate sim_score for the actions
trans_batch = self.argmax_translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.argmax_translation_builder.from_batch(trans_batch)
argmax_sim_values = [sum(checkpoints_reward(translation.gold_sent, translation.pred_sents[0]))
for translation in translations]
# get the beam search top k and calculate sim_score for the actions
trans_batch = self.translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.translation_builder.from_batch(trans_batch)
for i, translations_for_topk in enumerate(translations):
ref_code = translations_for_topk.gold_sent
src_raw = translations_for_topk.src_raw
argmax_reward = argmax_sim_values[i]
elements = []
for pred_translation in translations_for_topk.pred_sents:
reward = checkpoints_reward(ref_code, pred_translation)
if sum(reward) <= argmax_reward + 0.01:
continue
advantages = torch.tensor([0.0] + reward)
actions_tensor = torch.tensor(
[2] + [self.tgt_vocab.stoi[token] for token in pred_translation] + [3])
if advantages.shape[0] + 1 != actions_tensor.shape[0]:
print("length missmatch")
continue
src_tensor = torch.tensor([src_vocab.stoi[token] for token in src_raw])
elements.append((sum(reward), (src_tensor, actions_tensor, advantages)))
elements = sorted(elements, key=lambda x: x[0], reverse=True)
for _, eps in elements[:8]:
src_action_adv.append(eps)
if len(elements) > 0:
print(len(src_action_adv))
# sort by src length
if len(src_action_adv) < 64: continue
left_overs = [] # src_action_adv[64:]
src_action_adv = src_action_adv[:64]
src_action_adv = sorted(src_action_adv, key=lambda x: x[0].shape[0], reverse=True)
src_data = [item[0] for item in src_action_adv]
tgt_actions = [item[1] for item in src_action_adv]
advs = [item[2] for item in src_action_adv]
# print("Got data apply model")
with torch.set_grad_enabled(True):
try:
self.model.train()
self.optim.zero_grad()
src_lengths_eps = torch.tensor([src_tensor.shape[0] for src_tensor in src_data]).to("cuda")
src_eps = pad_sequence(src_data, padding_value=1).view(-1, 64, 1).to("cuda")
tgt_eps = pad_sequence(tgt_actions, padding_value=1).view(-1, 64, 1).to("cuda")
# calculate the actions to target output
outputs, attns = self.model(src_eps, tgt_eps, src_lengths_eps,
with_align=False)
policy_prob = self.model.generator(outputs).permute(1, 0, 2)
relevent_policy = torch.cat(
[policy_prob[idx][:len(actions) - 1] for idx, actions in enumerate(tgt_actions)])
actions = [actions[1:] for actions in tgt_actions]
actions_v = torch.cat(actions)
actions_l = actions_v.tolist()
actions_v.to("cuda")
advs_v = torch.cat(advs).to("cuda")
log_prob_v = F.log_softmax(relevent_policy, dim=1)
lp_a = log_prob_v[range(len(actions_l)), actions_v]
log_prob_actions_v = advs_v * lp_a
loss_policy_v = -log_prob_actions_v.mean()
loss_v = loss_policy_v
loss_v.backward()
self.optim.step()
src_action_adv = left_overs
except Exception as e:
print(e)
continue
# print("Finished model ")
step += 1
if step % 2 == 0:
logger.info(f"Training step {step}")
if valid_iter is not None and step % valid_steps == 0:
self.model.eval()
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: validate step %d'
% (self.gpu_rank, step))
valid_stats = self.validate(
valid_iter, src_vocab, moving_average=self.moving_average, stats_cls=stats_cls)
all_metrics[str(i)] = []
for metric in self.metrics:
all_metrics[str(i)].append(metric.eval())
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: gather valid stat \
step %d' % (self.gpu_rank, step))
valid_stats = self._maybe_gather_stats(valid_stats)
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: report stat step %d'
% (self.gpu_rank, step))
self._report_step(self.optim.learning_rate(),
step, valid_stats=valid_stats)
# Run patience mechanism
if self.earlystopper is not None:
self.earlystopper(valid_stats, step)
# If the patience has reached the limit, stop training
if self.earlystopper.has_stopped():
break
if (self.model_saver is not None
and (save_checkpoint_steps != 0
and step % save_checkpoint_steps == 0)):
self.model_saver.save(step, moving_average=self.moving_average)
if train_steps > 0 and step >= train_steps:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats, all_metrics
def validate(self, valid_iter, src_vocab, moving_average=None, stats_cls=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if self.optim._fp16 == "legacy" \
else avg.data
# Set model in validating mode.
valid_model.eval()
with torch.no_grad():
if stats_cls is None:
stats = onmt.utils.Statistics()
else:
stats = stats_cls()
# reset metric
for metric in self.metrics:
metric.reset()
for batch in valid_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
tgt = batch.tgt
# F-prop through the model.
outputs, attns = valid_model(src, tgt, src_lengths,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, outputs, attns)
trans_batch = self.valid_translator.translate_batch(
batch=batch, src_vocabs=[src_vocab],
attn_debug=False)
translations = self.valid_builder.from_batch(trans_batch)
targets = []
preds = []
for trans in translations:
max_score = 0
pred_sent = trans.pred_sents[0]
if self.score_fn is not None: