-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathutil.py
485 lines (351 loc) · 14.8 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import numpy as np
##############################################
# DATA READER AND LOADER
##############################################
def load_twitter_data(inputdatapath):
twitter_stress_text = np.load(inputdatapath + "/twitter/twitter_stress_text.npy")
twitter_relax_text = np.load(inputdatapath + "/twitter/twitter_relax_text.npy")
# shuffle data
shuffle_idx = np.arange(len(twitter_stress_text))
np.random.shuffle(shuffle_idx)
twitter_stress_text = twitter_stress_text[shuffle_idx]
shuffle_idx = np.arange(len(twitter_relax_text))
np.random.shuffle(shuffle_idx)
twitter_relax_text = twitter_relax_text[shuffle_idx]
return twitter_stress_text, twitter_relax_text
def load_preprocessed_twitter_data(inputdatapath):
twitter_stress_data_all = np.load(inputdatapath + "/twitter/twitter_stress_text_random.npy")
twitter_relax_data_all = np.load(inputdatapath + "/twitter/twitter_relax_text_random.npy")
twitter_stress_label_all = []
twitter_relax_label_all = []
for i in range(twitter_stress_data_all.shape[0]):
twitter_stress_label_all.append("1.0")
for i in range(twitter_relax_data_all.shape[0]):
twitter_relax_label_all.append("0.0")
return twitter_stress_data_all, twitter_stress_label_all, twitter_relax_data_all, twitter_relax_label_all
def load_interview_data_with_valid(inputdatapath):
interview_train_data, interview_train_labels = read_data(inputdatapath + "/interview/phase_all_transcript_label_per_sentence/train_text_genta.csv")
interview_valid_data, interview_valid_labels = read_data(inputdatapath + "/interview/phase_all_transcript_label_per_sentence/valid_text_genta.csv")
interview_test_data, interview_test_labels = read_data(inputdatapath + "/interview/phase_all_transcript_label_per_sentence/test_text_genta.csv")
return interview_train_data, interview_train_labels, interview_valid_data, interview_valid_labels, interview_test_data, interview_test_labels
def load_interview_data(inputdatapath):
interview_train_data, interview_train_labels = read_data(inputdatapath + "/interview/phase_all_transcript_label_per_sentence/train_text_genta.csv")
interview_test_data, interview_test_labels = read_data(inputdatapath + "/interview/phase_all_transcript_label_per_sentence/test_text_genta.csv")
return interview_train_data, interview_train_labels, interview_test_data, interview_test_labels
##############################################
# GENERATE VOCABULARY, WORD TO IDX MAP
##############################################
def generate_vocab(data):
# input = array of words
# output = word_to_idx: dict, idx_to_word: dict, vocab: array
word_to_idx = {}
idx_to_word = {}
vocab = []
word_to_idx[" "] = 0
idx_to_word[0] = " "
vocab.append(" ")
# generate vocabulary
num_word = 1
for i in range(len(data)):
words = data[i].split(" ")
for j in range(len(words)):
if not words[j] in word_to_idx:
idx_to_word[num_word] = words[j]
word_to_idx[words[j]] = num_word
vocab.append(words[j])
num_word += 1
return word_to_idx, idx_to_word, vocab
def generate_vocab_with_custom_embedding(vocab, word_embedding):
# input = vocab: list, word_embdding
# output = word_to_idx: dict, idx_to_word: dict, vocab: array
word_to_idx = {}
idx_to_word = {}
vocab = [" "] + vocab
new_embedding = np.zeros((word_embedding.shape[0] + 1, word_embedding.shape[1]))
for i in range(word_embedding.shape[0]):
new_embedding[i+1] = word_embedding[i]
word_to_idx[" "] = 0
idx_to_word[0] = " "
# generate vocabulary
for i in range(len(vocab)):
word_to_idx[vocab[i]] = len(word_to_idx)
idx_to_word[len(idx_to_word)] = vocab[i]
return word_to_idx, idx_to_word, vocab, new_embedding
def generate_word_index(data, labels, word_to_idx, idx_to_word, vocab, max_sequence_length):
# input = data: matrix of words, labels: array of words, word_to_idx: dict, idx_to_word: dict, vocab: array of words
# output = train_data: np array, train_labels: np array
train_data = np.zeros((len(data), max_sequence_length), dtype=np.int)
train_labels = np.zeros((len(labels)))
num_classes = 2
# generate vocabulary
for i in range(len(data)):
words = data[i].split(" ")
for j in range(min(len(words), max_sequence_length)):
cur_word = words[j]
if not cur_word in word_to_idx:
cur_word = " "
idx = word_to_idx[cur_word]
train_data[i][j] = idx
label = float(labels[i].replace("\n",""))
train_labels[i] = label
train_labels = (np.arange(num_classes) == train_labels[:,None]).astype(np.float32)
return train_data, train_labels
def preprocess_lowercase_negation(seq):
seq = seq.lower()
modal_tobe = ["do", "does", "did", "will", "would", "could", "should", "shall", "may", "might", "must", "is", "are", "was", "were", "has", "have", "had"]
arr = seq.split(" ")
for j in range(len(arr)):
word = arr[j]
for i in range(len(modal_tobe)):
word = word.replace(modal_tobe[i] + "nt", modal_tobe[i] + " not")
word = word.replace(modal_tobe[i] + "n't", modal_tobe[i] + " not")
arr[j] = word
word = word.replace("won't", "will not")
word = word.replace("can't", "cannot")
seq = ""
for j in range(len(arr)):
seq += arr[j]
if j < len(arr) - 1:
seq += " "
return seq
def check_data(data):
num_words = 0
vocab = {}
for i in range(len(data)):
arr = data[i].split(" ")
for j in range(len(arr)):
if not arr[j] in vocab:
vocab[arr[j]] = True
num_words += len(arr)
print("Number of words:", num_words)
print("Number of unique words:", len(vocab))
##############################################
# GENERATE EMBEDDINGS
##############################################
# print(">>> load embedding")
# # LOAD EMBEDDING
# emotion_rnn300_vocab = pickle.load(open("./pretrained/emotion_embedding_size_300/rnn/vocab.pkl","rb"), encoding='latin1')
# emotion_rnn300_embedding = pickle.load(open("./pretrained/emotion_embedding_size_300/rnn/emotion_embedding.pkl","rb"), encoding='latin1')
# emotion_cnn300_vocab = pickle.load(open("./pretrained/emotion_embedding_size_300/cnn/vocab.pkl","rb"), encoding='latin1')
# emotion_cnn300_embedding = pickle.load(open("./pretrained/emotion_embedding_size_300/cnn/emotion_embedding.pkl","rb"), encoding='latin1')
# emotion_50_vocab = pickle.load(open("./pretrained/emotion_embedding_size_50/vocab.pkl","rb"), encoding='latin1')
# emotion_50_embedding = pickle.load(open("./pretrained/emotion_embedding_size_50/emotion_embedding.pkl","rb"), encoding='latin1')
# word2vec = KeyedVectors.load_word2vec_format('./pretrained/word2vec_embedding_size_300/GoogleNews-vectors-negative300.bin', binary=True)
# basic_word2vec300_vocab = pickle.load(open("./pretrained/basic_word2vec/vocab.pkl","rb"), encoding='latin1')
# basic_word2vec300_embedding = pickle.load(open("./pretrained/basic_word2vec/word2vec300_gensim.pkl","rb"), encoding='latin1')
# custom_vocab = None
# custom_embedding = None
# # FUNCTIONS TO CALL THE EMBEDDING
# emotion_cnn300_reverse_dict = {}
# for i in emotion_cnn300_vocab.keys():
# emotion_cnn300_reverse_dict[emotion_cnn300_vocab[i]] = i
# emotion_rnn300_reverse_dict = {}
# for i in emotion_rnn300_vocab.keys():
# emotion_rnn300_reverse_dict[emotion_rnn300_vocab[i]] = i
# emotion_50_reverse_dict = {}
# for i in emotion_50_vocab.keys():
# emotion_50_reverse_dict[emotion_50_vocab[i]] = i
# basic_word2vec300_reverse_dict = {}
# for i in basic_word2vec300_vocab.keys():
# basic_word2vec300_reverse_dict[basic_word2vec300_vocab[i]] = i
# FOR CUSTOM VOCAB AND EMBEDDING
def set_custom_vocab(vocab_path, embedding_path):
custom_vocab = pickle.load(open(vocab_path))
custom_embedding = pickle.load(open(embedding_path))
custom_reverse_dict = {}
for i in custom_vocab.keys():
custom_reverse_dict[custom_vocab[i]] = i
def set_custom_vocab_np(vocab_path, embedding_path):
custom_vocab = np.load(open(vocab_path), encoding="latin1")
custom_embedding = np.load(open(embedding_path), encoding="latin1")
custom_reverse_dict = {}
for i in custom_vocab.keys():
custom_reverse_dict[custom_vocab[i]] = i
def get_custom_embedding(word):
if word in custom_reverse_dict.keys():
return custom_embedding[custom_reverse_dict[word], :]
else:
return None
def get_emotion_cnn300_embedding(word):
if word in emotion_cnn300_reverse_dict.keys():
return emotion_cnn300_embedding[emotion_cnn300_reverse_dict[word], :]
else:
return None
def get_emotion_rnn300_embedding(word):
if word in emotion_rnn300_reverse_dict.keys():
return emotion_rnn300_embedding[emotion_rnn300_reverse_dict[word], :]
else:
return None
def get_emotion_50_embedding(word):
if word in emotion_50_reverse_dict.keys():
return emotion_50_embedding[emotion_50_reverse_dict[word], :]
else:
return None
def get_basic_word2vec300_embedding(word):
if word in basic_word2vec300_reverse_dict.keys():
return basic_word2vec300_embedding[basic_word2vec300_reverse_dict[word], :]
else:
return None
def get_distance(word1, word2):
embed1 = get_embedding(word1)
embed2 = get_embedding(word2)
if embed1 is not None and embed2 is not None:
return spatial.distance.cosine(embed1, embed2)
return None
def get_word2vec_embedding(word):
if word in word2vec:
return word2vec[word]
else:
return None
def generate_embedding(data, labels, embedding="rnn300", embedding_size=300):
num_classes = 2
if embedding == "google_word2vec":
data, labels = generate_word2vec_embedding_data(data, labels, embedding_size)
elif embedding == "emo_rnn300":
data, labels = generate_emotion_rnn300_embedding_data(data, labels, embedding_size)
elif embedding == "emo_cnn300":
data, labels = generate_emotion_cnn300_embedding_data(data, labels, embedding_size)
elif embedding == "emo_50":
data, labels = generate_emotion_50_embedding_data(data, labels, embedding_size)
elif embedding == "basic_word2vec300":
data, labels = generate_basic_word2vec300_embedding_data(data, labels, embedding_size)
elif embedding == "custom":
data, labels = generate_custom_embedding_data(data, labels, embedding_size)
labels = (np.arange(num_classes) == labels[:,None]).astype(np.float32)
return data, labels
def read_data(path):
texts = []
labels = []
with open(path, "r") as file:
line_count = 0
for line in file:
# print(line)
sample = []
if line_count > 0:
temp = np.zeros((50))
row = line.split(",")
text = row[1].replace("\"","").replace("\n", "")
label = row[2]
texts.append(text)
labels.append(label.replace("\n",""))
#print("text", text, "label", label)
line_count+=1
return texts, labels
# generate CUSTOM embedding data
def generate_custom_embedding_data(texts, labels, embedding_size):
train_data = np.zeros((len(texts), max_sequence_length, embedding_size))
train_labels = np.zeros((len(labels)))
print(len(texts))
for i in range(len(texts)):
word_embedding = np.zeros((max_sequence_length, embedding_size))
sentence = texts[i]
words = sentence.split(" ")
for j in range(len(words)):
word = words[j].strip()
embed = get_custom_embedding(word)
if not embed is None:
word_embedding[j] = embed
else:
word_embedding[j] = np.zeros((embedding_size))
label = labels[i]
train_data[i] = word_embedding
train_labels[i] = label
return train_data, train_labels
def generate_emotion_cnn300_embedding_data(texts, labels, embedding_size):
train_data = np.zeros((len(texts), max_sequence_length, embedding_size))
train_labels = np.zeros((len(labels)))
print(len(texts))
for i in range(len(texts)):
word_embedding = np.zeros((max_sequence_length, embedding_size))
sentence = texts[i]
words = sentence.split(" ")
for j in range(len(words)):
word = words[j].strip()
embed = get_emotion_cnn300_embedding(word)
if not embed is None:
word_embedding[j] = embed
else:
word_embedding[j] = np.zeros((embedding_size))
label = labels[i]
train_data[i] = word_embedding
train_labels[i] = label
return train_data, train_labels
def generate_emotion_rnn300_embedding_data(texts, labels, embedding_size):
train_data = np.zeros((len(texts), max_sequence_length, embedding_size))
train_labels = np.zeros((len(labels)))
for i in range(len(texts)):
word_embedding = np.zeros((max_sequence_length, embedding_size))
sentence = texts[i]
words = sentence.split(" ")
for j in range(len(words)):
word = words[j].strip()
embed = get_emotion_rnn300_embedding(word)
if not embed is None:
word_embedding[j] = embed
else:
word_embedding[j] = np.zeros((embedding_size))
label = float(labels[i].replace("\n",""))
train_data[i] = word_embedding
train_labels[i] = label
return train_data, train_labels
def generate_emotion_50_embedding_data(texts, labels, embedding_size):
train_data = np.zeros((len(texts), max_sequence_length, embedding_size))
train_labels = np.zeros((len(labels)))
for i in range(len(texts)):
word_embedding = np.zeros((max_sequence_length, embedding_size))
sentence = texts[i]
words = sentence.split(" ")
for j in range(len(words)):
word = words[j].strip()
embed = get_emotion_50_embedding(word)
if not embed is None:
word_embedding[j] = embed
else:
word_embedding[j] = np.zeros((embedding_size))
label = float(labels[i].replace("\n",""))
train_data[i] = word_embedding
train_labels[i] = label
train_data = np.array(train_data)
train_labels = np.array(train_labels)
return train_data, train_labels
def generate_basic_word2vec300_embedding_data(texts, labels, embedding_size):
train_data = np.zeros((len(texts), max_sequence_length, embedding_size))
train_labels = np.zeros((len(labels)))
for i in range(len(texts)):
word_embedding = np.zeros((max_sequence_length, embedding_size))
sentence = texts[i]
words = sentence.split(" ")
for j in range(min(len(words), max_sequence_length)):
word = words[j].strip()
embed = get_basic_word2vec300_embedding(word)
if not embed is None:
word_embedding[j] = embed
else:
word_embedding[j] = np.zeros((embedding_size))
label = float(labels[i].replace("\n",""))
train_data[i] = word_embedding
train_labels[i] = label
train_data = np.array(train_data)
train_labels = np.array(train_labels)
return train_data, train_labels
def generate_word2vec_embedding_data(texts, labels, embedding_size):
train_data = np.zeros((len(texts), max_sequence_length, embedding_size))
train_labels = np.zeros((len(labels)))
print(len(texts))
for i in range(len(texts)):
word_embedding = np.zeros((max_sequence_length, embedding_size))
sentence = texts[i]
words = sentence.split(" ")
for j in range(len(words)):
word = words[j].strip()
embed = get_word2vec_embedding(word)
if not embed is None:
word_embedding[j] = embed
else:
word_embedding[j] = np.zeros((embedding_size))
label = float(labels[i].replace("\n",""))
train_data[i] = word_embedding
train_labels[i] = label
train_data = np.array(train_data)
train_labels = np.array(train_labels)
return train_data, train_labels