-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreporter.py
283 lines (251 loc) · 10.1 KB
/
reporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
Module to generate reports for benchmarks.
"""
import ast
import math
from pathlib import Path
import shutil
import tempfile
from typing import Literal, Optional, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas.api
from PIL import Image
A4_LONG_SIDE = 11.69
A4_SHORT_SIDE = 8.27
def generate_reports(results_path: Path, output_dir: Path):
benchmark_df = pd.read_csv(results_path)
def format_run_details(input: dict) -> str:
if input is None or input == np.nan:
return ""
if isinstance(input, str):
input = ast.literal_eval(input)
result_list = [f"{key}:{input[key]}" for key in input]
return ";".join(result_list)
return ""
# Detailed report per package and per operation
for package in benchmark_df["package"].unique():
reports_package_dir = output_dir / package
reports_package_dir.mkdir(parents=True, exist_ok=True)
package_df = benchmark_df.loc[benchmark_df["package"] == package]
for operation in package_df["operation"].unique():
package_operation_df = package_df.loc[
benchmark_df["operation"] == operation
]
operation_descr = package_operation_df[
package_operation_df["run_datetime"]
== package_operation_df["run_datetime"].max()
]["operation_descr"].item()
package_operation_df = package_operation_df[
["package_version", "run_details", "secs_taken"]
]
package_operation_df["run_details"] = package_operation_df[
"run_details"
].apply(lambda x: format_run_details(x))
package_operation_df = package_operation_df.set_index(
["package_version", "run_details"]
)
results_report_path = reports_package_dir / f"{package}_{operation}.png"
save_chart(
df=package_operation_df,
title=f"{package}-{operation}\n({operation_descr})",
size=(8, 6),
print_labels_on_points=True,
y_value_formatter="{0:.2f}",
output_path=results_report_path,
)
# Report for last version of each package+operation for comparison
from packaging.version import Version
benchmark_df["version_suffix"] = benchmark_df["package_version"].apply(
lambda x: x.split("-")[1] if len(x.split("-")) > 1 else ""
)
benchmark_df["version"] = benchmark_df["package_version"].apply(
lambda x: Version(x.split("-")[0])
)
benchmark_maxversions_df = (
benchmark_df[["package", "operation", "version", "version_suffix"]]
.sort_values(
["package", "operation", "version", "version_suffix"], ascending=False
)
.groupby(["package", "operation"])
.first()
.reset_index()
.set_index(["package", "operation", "version", "version_suffix"])
)
benchmark_maxversion_df = benchmark_df.set_index(
["package", "operation", "version", "version_suffix"]
)
benchmark_maxversion_df = (
benchmark_maxversion_df.loc[
benchmark_maxversion_df.index.isin(benchmark_maxversions_df.index)
].reset_index()
)[["package", "version", "version_suffix", "operation", "secs_taken"]]
# Only keep the last benchmark result value for the same package+operation+version,
# otherwise pivot_table takes the average seconds
benchmark_maxversion_df = (
benchmark_maxversion_df.groupby(
by=["package", "version", "version_suffix", "operation"]
)
.last()
.reset_index()
)
benchmark_maxversion_df = benchmark_maxversion_df.pivot_table(
index="operation", columns=["package", "version", "version_suffix"]
)
# Drop the "secs_taken" level to cleanup legend in chart
benchmark_maxversion_df = benchmark_maxversion_df.droplevel(level=0, axis=1)
results_report_path = output_dir / "GeoBenchmark.png"
save_chart(
df=benchmark_maxversion_df,
title="Comparison of libraries, time in sec\n",
output_path=results_report_path,
yscale="log",
print_labels_on_points=True,
y_value_formatter="{0:.0f}",
size=(8, 6),
linestyle="None",
gridlines="y",
)
def save_chart(
df: pd.DataFrame,
title: str,
output_path: Path,
yscale: Optional[Literal["linear", "log", "symlog", "logit"]] = None,
y_value_formatter: Optional[str] = None,
print_labels_on_points: bool = False,
size: Tuple[float, float] = (8, 4),
plot_kind: Literal[
"line",
"bar",
"barh",
"hist",
"box",
"kde",
"density",
"area",
"pie",
"scatter",
"hexbin",
] = "line",
gridlines: Optional[Literal["both", "x", "y"]] = None,
linestyle: Optional[str] = None,
):
"""
Render and save a chart.
Args:
df (pd.DataFrame): The data to plot. The index should be the x axis values.
title (str): The title of the chart.
output_path (Path): _description_
yscale (Literal["linear", "log", "symlog", "logit"], optional): y scale to use.
y_value_formatter (str, optional): a formatter for the y axes and
labels. Examples:
- {0:.2%} for a percentage.
- {0:.2f} for a float with two decimals.
Defaults to None.
print_labels_on_points (bool, optional): _description_. Defaults to False.
size (Tuple[float, float], optional): _description_. Defaults to (8, 4).
plot_kind (str, optional): _description_. Defaults to "line".
gridlines (str, optional): where to draw grid lines:
- 'x': draw grid lines on the x axis
- 'y': draw grid lines on the x axis
- 'both': draw grid lines on both axes
If None, the default for the style used is used. Defaults to None.
linestyle (Optional[str], optional): _description_. Defaults to None.
Raises:
Exception: _description_
"""
# Init
# Check input
non_numeric_columns = [
column
for column in df.columns
if not pandas.api.types.is_numeric_dtype(df[column])
]
if len(non_numeric_columns) > 0:
raise Exception(
f"df has non-numeric columns, so cannot be plotted: {non_numeric_columns}"
)
# Init some things based on input
rot = 90
# Prepare plot figure and axes
fig, axs = plt.subplots(figsize=(size))
# Make sure all x axis values are shown
axs.set_xticks(range(len(df)))
if yscale is not None:
plt.yscale(yscale)
# Plot
df.plot(ax=axs, kind=plot_kind, rot=rot, title=title, linestyle=linestyle)
# Show y axes as percentages is asked
if y_value_formatter is not None:
axs.yaxis.set_major_formatter(plt.FuncFormatter(y_value_formatter.format))
axs.yaxis.set_minor_formatter(plt.FuncFormatter(y_value_formatter.format))
# Show grid lines if specified
if gridlines is not None:
axs.grid(axis=gridlines, which="both")
# Set different markers + print labels
# Set different markers for each line + get mn/max values + print labels
markers = ("+", ".", "o", "*")
max_y_value = None
min_y_value = None
for i, line in enumerate(axs.get_lines()):
line.set_marker(markers[i % len(markers)])
label_above_line = True
for index, row in enumerate(df.itertuples()):
for row_fieldname, row_fieldvalue in row._asdict().items():
if row_fieldname != "Index":
if max_y_value is None or row_fieldvalue > max_y_value:
max_y_value = row_fieldvalue
if min_y_value is None or row_fieldvalue < min_y_value:
min_y_value = row_fieldvalue
if print_labels_on_points is True:
# Format label
if y_value_formatter is not None:
text = y_value_formatter.format(row_fieldvalue)
else:
text = str(row_fieldvalue)
# Label below or above line? + switch
if label_above_line is True:
xytext = (0, 5)
label_above_line = False
else:
xytext = (0, -15)
label_above_line = True
axs.annotate(
text=text,
# s=text,
# xy=(row.Index, row_fieldvalue),
xy=(index, row_fieldvalue),
xytext=xytext,
textcoords="offset points",
ha="center",
)
# Set bottom and top values for y axis
if max_y_value is not None:
max_y_value *= 1.1
if max_y_value is not None and math.isnan(max_y_value) is False:
plt.ylim(bottom=0, top=max_y_value)
else:
plt.ylim(bottom=0)
# Set legend to the right of the chart
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.tight_layout()
# Save the file if it doesn't exist yet
if not output_path.exists():
fig.savefig(str(output_path))
else:
# If it exists already, only save it if it has changed
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_output_path = Path(tmp_dir) / output_path.name
fig.savefig(tmp_output_path)
img_new = np.asarray(Image.open(tmp_output_path))
img_old = np.asarray(Image.open(output_path))
if not np.array_equal(img_new, img_old):
shutil.move(tmp_output_path, output_path)
plt.close(fig)
if __name__ == "__main__":
results_dir = Path(__file__).resolve().parent / "results_vector_ops"
# results_dir = Path(__file__).resolve().parent / "results_zonalstats"
results_path = results_dir / "benchmark_results.csv"
output_dir = results_dir
generate_reports(results_path, output_dir)