-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbetaVAE_interpolation.py
232 lines (187 loc) · 7.33 KB
/
betaVAE_interpolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import json
import argparse
import datetime
import pickle
import numpy as np
from sklearn.model_selection import train_test_split
from model import *
from betaVAE import *
from read_data import *
from utils import *
parser = argparse.ArgumentParser(description='betaVAE disantangle generation of RNA-Seq data')
parser.add_argument('--config', type=str, help='JSON config file')
parser.add_argument('--checkpoint', type=str, default=None,
help='File with the checkpoint to start with')
parser.add_argument('--seed', type=int, default=99,
help='Seed for random generation')
parser.add_argument('--parallel', type=int, default=None,
help='If data parallel wants to be used for training')
parser.add_argument('--type', type=str, default='tissue',
help='Type of interpolation to do: tissue or sex')
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
with open(args.config) as f:
config = json.load(f)
print(10*'-')
print('Config for this experiment \n')
print(config)
print(10*'-')
if 'flag' in config:
args.flag = config['flag']
else:
args.flag = 'train_{date:%Y-%m-%d %H:%M:%S}'.format(date=datetime.datetime.now())
if not os.path.exists(config['save_dir']):
os.mkdir(config['save_dir'])
path_csv = config['path_csv']
rna_features = config['rna_features']
batch_size = config.get('batch_size', 64)
encoder_checkpoint = config.get('encoder_checkpoint', None)
beta = config.get('beta', 2)
quick = config.get('quick', 0)
opt = config.get('optimizer', 'Adam')
print('Loading dataset...')
datasets = {
'train': [],
'test': [],
'val': []
}
for dataset in path_csv:
print(dataset)
df = pd.read_csv(dataset)
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
#train_df, val_df, test_df, scaler = normalize_dfs(train_df, val_df, test_df, norm_type='minmax')
datasets['train'].append(train_df)
datasets['test'].append(test_df)
datasets['val'].append(val_df)
if(len(datasets['train']) >=2):
train_df = pd.concat([datasets['train'][0], datasets['train'][1]])
val_df = pd.concat([datasets['val'][0], datasets['val'][1]])
test_df = pd.concat([datasets['test'][0], datasets['test'][1]])
for i in range(2, len(datasets['train'])):
print(i)
train_df = pd.concat([train_df, datasets['train'][i]])
val_df = pd.concat([val_df, datasets['val'][i]])
test_df = pd.concat([test_df, datasets['test'][i]])
else:
train_df = datasets['train'][0]
val_df = datasets['val'][0]
test_df = datasets['test'][0]
print('Train shape {}'.format(train_df.shape))
print('Val shape {}'.format(val_df.shape))
print('Test shape {}'.format(test_df.shape))
train_df, val_df, test_df, scaler = normalize_dfs(train_df, val_df, test_df, norm_type='standard')
if encoder_checkpoint:
model = betaVAE(rna_features, 2048, [12000, 4096, 2048], [4096, 12000],
encoder_checkpoint=encoder_checkpoint)
print('Restoring from checkpoint')
print(args.checkpoint)
model.load_state_dict(torch.load(args.checkpoint))
print('Loaded model from checkpoint')
else:
model = betaVAE(rna_features, 2048, [6000, 4000, 2048], [4000, 6000], beta=beta)
print('Restoring from checkpoint')
print(args.checkpoint)
model.load_state_dict(torch.load(args.checkpoint))
print('Loaded model from checkpoint')
#if torch.cuda.is_available():
# model = model.cuda()
model.eval()
if args.type == 'tissue':
# Get samples from two tissues
dataset1 = datasets['train'][0]
dataset2 = datasets['train'][1]
rna_columns = [x for x in train_df.columns if 'rna_' in x]
def _get_log(x):
# trick to take into account zeros
x = np.log(x.replace(0, np.nan))
return x.replace(np.nan, 0)
# get list of columns to scale
# log transform
dataset1[rna_columns] = dataset1[rna_columns].apply(_get_log)
dataset2[rna_columns] = dataset2[rna_columns].apply(_get_log)
dataset1 = dataset1[rna_columns].values
dataset2 = dataset2[rna_columns].values
dataset1 = scaler.transform(dataset1)
dataset2 = scaler.transform(dataset2)
dataset1 = torch.from_numpy(dataset1).float()
dataset2 = torch.from_numpy(dataset2).float()
# get encodings from each sample
z_mu1, z_logvar1, sample1_encod = model.encode(dataset1)
z_mu2, z_logvar2, sample2_encod = model.encode(dataset2)
# getting the centroids for each class
z_mu1_centroid = z_mu1.mean(axis=0)
z_mu2_centroid = z_mu2.mean(axis=0)
# get difference between the encodings
difference1 = z_mu1_centroid - z_mu2_centroid
difference2 = z_mu2_centroid - z_mu1_centroid
# forward pass over decoder
recons_1 = model.decode(sample1_encod + difference1)
recons_2 = model.decode(sample2_encod + difference2)
elif args.type == 'sex':
dataset = datasets['train'][0]
ref = pd.read_csv('../../GTEx_Analysis_v8_Annotations_SubjectPhenotypesDS.txt', sep='\t')
wsi_file_name = dataset['wsi_file_name'].values
wsi_male = []
wsi_female = []
for _, row in ref.iterrows():
sex = row['SEX']
for wsi in wsi_file_name:
if row['SUBJID'] in wsi:
if sex == 1:
wsi_male.append(wsi)
else:
wsi_female.append(wsi)
break
rna_columns = [x for x in train_df.columns if 'rna_' in x]
male_df = dataset.loc[dataset['wsi_file_name'].isin(wsi_male)]
female_df = dataset.loc[dataset['wsi_file_name'].isin(wsi_female)]
def _get_log(x):
# trick to take into account zeros
x = np.log(x.replace(0, np.nan))
return x.replace(np.nan, 0)
# get list of columns to scale
# log transform
male_df[rna_columns] = male_df[rna_columns].apply(_get_log)
female_df[rna_columns] = female_df[rna_columns].apply(_get_log)
male_df = male_df[rna_columns].values
female_df = female_df[rna_columns].values
male_df = scaler.transform(male_df)
female_df = scaler.transform(female_df)
male_df = torch.from_numpy(male_df).float()
female_df = torch.from_numpy(female_df).float()
# get encodings from each sample
z_mu1, z_logvar1, sample1_encod = model.encode(male_df)
z_mu2, z_logvar2, sample2_encod = model.encode(female_df)
# getting the centroids for each class
z_mu1_centroid = z_mu1.mean(axis=0)
z_mu2_centroid = z_mu2.mean(axis=0)
# get difference between the encodings
difference1 = z_mu1_centroid - z_mu2_centroid
difference2 = z_mu2_centroid - z_mu1_centroid
# forward pass over decoder
recons_1 = model.decode(sample1_encod + difference1)
recons_2 = model.decode(sample2_encod + difference2)
else:
print('You need to choose between tissue or sex')
exit(1)
# save the results
results = {
'z_mu1': z_mu1,
'z_mu2': z_mu2,
'z_logvar1': z_logvar1,
'z_logvar2': z_logvar2,
'sample1_encod': sample1_encod,
'sample2_encod': sample2_encod,
'sample1': male_df.detach().numpy(),
'sample2': female_df.detach().numpy(),
'recons_1': recons_1.detach().numpy(),
'recons_2': recons_2.detach().numpy(),
'z_a_to_b': difference1.detach().numpy(),
'z_b_to_a': difference2.detach().numpy()
}
f = open(os.path.join(config['save_dir'], 'interpolation_lung_sex_results.pkl'), "wb")
pickle.dump(results, f)
f.close()