-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbetaVAE_sample.py
137 lines (111 loc) · 4.24 KB
/
betaVAE_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import json
import argparse
import datetime
import pickle
import numpy as np
from sklearn.model_selection import train_test_split
from model import *
from betaVAE import *
from read_data import *
from utils import *
parser = argparse.ArgumentParser(description='betaVAE generation of RNA-Seq data')
parser.add_argument('--config', type=str, help='JSON config file')
parser.add_argument('--checkpoint', type=str, default=None,
help='File with the checkpoint to start with')
parser.add_argument('--seed', type=int, default=99,
help='Seed for random generation')
parser.add_argument('--log', type=int, default=0,
help='Use tensorboard for experiment logging')
parser.add_argument('--parallel', type=int, default=None,
help='If data parallel wants to be used for training')
parser.add_argument('--num_samples', type=int, default=64,
help='Number of samples to generate.')
parser.add_argument('--interpolation', type=str, default=None,
help='Interpolation file to move between samples')
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
with open(args.config) as f:
config = json.load(f)
print(10*'-')
print('Config for this experiment \n')
print(config)
print(10*'-')
if 'flag' in config:
args.flag = config['flag']
else:
args.flag = 'train_{date:%Y-%m-%d %H:%M:%S}'.format(date=datetime.datetime.now())
if not os.path.exists(config['save_dir']):
os.mkdir(config['save_dir'])
path_csv = config['path_csv']
rna_features = config['rna_features']
batch_size = config.get('batch_size', 64)
encoder_checkpoint = config.get('encoder_checkpoint', None)
beta = config.get('beta', 2)
quick = config.get('quick', 0)
opt = config.get('optimizer', 'Adam')
print('Loading dataset...')
datasets = {
'train': [],
'test': [],
'val': []
}
for dataset in path_csv:
print(dataset)
df = pd.read_csv(dataset)
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
#train_df, val_df, test_df, scaler = normalize_dfs(train_df, val_df, test_df, norm_type='minmax')
datasets['train'].append(train_df)
datasets['test'].append(test_df)
datasets['val'].append(val_df)
if(len(datasets['train']) >=2):
train_df = pd.concat([datasets['train'][0], datasets['train'][1]])
val_df = pd.concat([datasets['val'][0], datasets['val'][1]])
test_df = pd.concat([datasets['test'][0], datasets['test'][1]])
for i in range(2, len(datasets['train'])):
print(i)
train_df = pd.concat([train_df, datasets['train'][i]])
val_df = pd.concat([val_df, datasets['val'][i]])
test_df = pd.concat([test_df, datasets['test'][i]])
else:
train_df = datasets['train'][0]
val_df = datasets['val'][0]
test_df = datasets['test'][0]
print('Train shape {}'.format(train_df.shape))
print('Val shape {}'.format(val_df.shape))
print('Test shape {}'.format(test_df.shape))
train_df, val_df, test_df, scaler = normalize_dfs(train_df, val_df, test_df, norm_type='standard')
if encoder_checkpoint:
model = betaVAE(rna_features, 2048, [12000, 4096, 2048], [4096, 12000],
encoder_checkpoint=encoder_checkpoint)
print('Restoring from checkpoint')
print(args.checkpoint)
model.load_state_dict(torch.load(args.checkpoint))
print('Loaded model from checkpoint')
else:
model = betaVAE(rna_features, 2048, [6000, 4000, 2048], [4000, 6000], beta=beta)
print('Restoring from checkpoint')
print(args.checkpoint)
model.load_state_dict(torch.load(args.checkpoint))
print('Loaded model from checkpoint')
if torch.cuda.is_available():
model = model.cuda()
model.eval()
if args.interpolation:
f = open(args.interpolation,'rb')
interpolation = pickle.load(f)
f.close()
difference = interpolation['z_b_to_a']
else:
difference = None
# Generating samples
generated_samples = model.sample(args.num_samples, 'cuda:0', interpolation=difference)
# Saving results
results = {}
# Reversing the transformation
results['generated'] = scaler.inverse_transform(generated_samples.detach().cpu().numpy())
f = open(os.path.join(config['save_dir'], 'generated_samples_interpolation_lung.pkl'), "wb")
pickle.dump(results, f)
f.close()