-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbetaVAE_training.py
202 lines (165 loc) · 6.71 KB
/
betaVAE_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import json
import argparse
import datetime
import pickle
import numpy as np
import torch
from torch.optim import Adam, SGD, RAdam
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from tensorboardX import SummaryWriter
from torchvision import transforms
from sklearn.model_selection import train_test_split
from warmup_scheduler import GradualWarmupScheduler
from model import *
from betaVAE import *
from read_data import *
from utils import *
parser = argparse.ArgumentParser(description='betaVAE training over RNA-Seq data')
parser.add_argument('--config', type=str, help='JSON config file')
parser.add_argument('--checkpoint', type=str, default=None,
help='File with the checkpoint to start with')
parser.add_argument('--seed', type=int, default=99,
help='Seed for random generation')
parser.add_argument('--log', type=int, default=0,
help='Use tensorboard for experiment logging')
parser.add_argument('--parallel', type=int, default=None,
help='If data parallel wants to be used for training')
args = parser.parse_args()
#p.random.seed(args.seed)
#torch.manual_seed(args.seed)
with open(args.config) as f:
config = json.load(f)
print(10*'-')
print('Config for this experiment \n')
print(config)
print(10*'-')
if 'flag' in config:
args.flag = config['flag']
else:
args.flag = 'train_{date:%Y-%m-%d %H:%M:%S}'.format(date=datetime.datetime.now())
if not os.path.exists(config['save_dir']):
os.mkdir(config['save_dir'])
path_csv = config['path_csv']
rna_features = config['rna_features']
batch_size = config.get('batch_size', 64)
encoder_checkpoint = config.get('encoder_checkpoint', None)
beta = config.get('beta', 2)
quick = config.get('quick', 0)
opt = config.get('optimizer', 'Adam')
print('Loading dataset...')
datasets = {
'train': [],
'test': [],
'val': []
}
test_labels = []
for id, dataset in enumerate(path_csv):
print(dataset)
df = pd.read_csv(dataset)
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
#train_df, val_df, test_df, scaler = normalize_dfs(train_df, val_df, test_df, norm_type='minmax')
datasets['train'].append(train_df)
datasets['test'].append(test_df)
datasets['val'].append(val_df)
test_labels = test_labels + ([id] * test_df.shape[0])
if(len(datasets['train']) >=2):
train_df = pd.concat([datasets['train'][0], datasets['train'][1]])
val_df = pd.concat([datasets['val'][0], datasets['val'][1]])
test_df = pd.concat([datasets['test'][0], datasets['test'][1]])
for i in range(2, len(datasets['train'])):
train_df = pd.concat([train_df, datasets['train'][i]])
val_df = pd.concat([val_df, datasets['val'][i]])
test_df = pd.concat([test_df, datasets['test'][i]])
else:
train_df = datasets['train'][0]
val_df = datasets['val'][0]
test_df = datasets['test'][0]
print('Train shape {}'.format(train_df.shape))
print('Val shape {}'.format(val_df.shape))
print('Test shape {}'.format(test_df.shape))
train_df, val_df, test_df, scaler = normalize_dfs(train_df, val_df, test_df, norm_type='standard')
train_dataset = RNADataset([train_df], quick=quick)
val_dataset = RNADataset([val_df])
test_dataset = RNADataset([test_df])
train_dataloader = DataLoader(train_dataset,batch_size=batch_size,
num_workers=4, shuffle=True)
val_dataloader = DataLoader(val_dataset,batch_size=batch_size,
num_workers=4,
shuffle=False)
test_dataloader = DataLoader(test_dataset,batch_size=1,
num_workers=4,
shuffle=False)
# training
print('Finished loading dataset and creating dataloader')
print('Initializing models')
if encoder_checkpoint:
model = betaVAE(rna_features, 2048, [12000, 4096, 2048], [4096, 12000],
encoder_checkpoint=encoder_checkpoint)
if args.checkpoint is not None:
print('Restoring from checkpoint')
print(args.checkpoint)
model.load_state_dict(torch.load(args.checkpoint))
print('Loaded model from checkpoint')
else:
model.z_mu.apply(init_weights_uniform)
model.decoder.apply(init_weights_uniform)
model.z_logvar.apply(init_weights_uniform)
else:
model = betaVAE(rna_features, 2048, [6000, 4000, 2048], [4000, 6000], beta=beta)
if args.checkpoint is not None:
print('Restoring from checkpoint')
print(args.checkpoint)
model.load_state_dict(torch.load(args.checkpoint))
print('Loaded model from checkpoint')
else:
model.apply(init_weights_xavier)
#torch.nn.utils.clip_grad_norm_(model.parameters(), 0.25)
print('Model initialized')
if args.parallel:
print('Using more than one gpu...')
model = nn.DataParallel(model)
if torch.cuda.is_available():
model = model.cuda()
lr = config.get('lr', 3e-3)
if opt == 'RAdam':
optimizer = RAdam(model.parameters(), weight_decay = config['weights_decay'], lr=lr)
elif opt == 'SGD':
optimizer = SGD(model.parameters(), weight_decay = config['weights_decay'], lr=lr)
else:
optimizer = Adam(model.parameters(), weight_decay = config['weights_decay'], lr=lr)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=125, gamma=0.1)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 500)
scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=1000, after_scheduler=scheduler)
# train model
if args.log:
summary_writer = SummaryWriter(
os.path.join(config['summary_path'],
datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S") + "_{0}".format(args.flag)))
summary_writer.add_text('config', str(config))
else:
summary_writer = None
dataloaders = {
'train': train_dataloader,
'val': val_dataloader
}
model, results = train_betaVAE(model, optimizer, dataloaders,
save_dir=config['save_dir'],
device=config['device'],
log_interval=config['log_interval'],
summary_writer=summary_writer,
num_epochs=config['num_epochs'],
scheduler=scheduler_warmup)
results_test, predictions, real = evaluate_betaVAE(model, test_dataloader)
# Reversing the transformation
predictions = np.vstack(predictions)
real = np.vstack(real)
test_results = {'predictions': 0, 'real': 0}
test_results['predictions'] = scaler.inverse_transform(predictions)
test_results['real'] = scaler.inverse_transform(real)
test_results['test_ids'] = test_df['wsi_file_name'].values
test_results['test_labels'] = np.asarray(test_labels)
f = open(os.path.join(config['save_dir'], 'test_results.pkl'), "wb")
pickle.dump(test_results, f)
f.close()