-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhistopathology_gan.py
314 lines (271 loc) · 10.8 KB
/
histopathology_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import argparse
import os
import datetime
import json
import torch
import torch.nn as nn
from types_ import *
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.optim import Adam
# Torchgan Imports
import torchgan
from torchgan.models import *
from torchgan.losses import *
from torchgan.trainer import ParallelTrainer, Trainer
from wsi_model import *
from read_data import *
from wgan_loss import *
from biggan import BigGanGenerator, BigGanDiscriminator
from sagan import SAGANGenerator, SAGANDiscriminator
from dcgan import DCGANUpGenerator
def custom_collate_fn_wganvae(batch):
"""Remove bad entries from the dataloader
Args:
batch (torch.Tensor): batch of tensors from the dataaset
Returns:
collate: Default collage for the dataloader
"""
batch = list(filter(lambda x: x['image'] is not None, batch))
return torch.utils.data.dataloader.default_collate(batch)
def custom_collate_fn(batch):
"""Remove bad entries from the dataloader
Args:
batch (torch.Tensor): batch of tensors from the dataaset
Returns:
collate: Default collage for the dataloader
"""
batch = list(filter(lambda x: x['image'] is not None, batch))
return torch.utils.data.dataloader.default_collate(batch)
# https://github.com/torchgan/model-zoo/blob/master/gman/gman.py
# to update the losses and use the VAE
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GANs training on histology data')
parser.add_argument('--config', type=str, help='JSON config file')
parser.add_argument('--checkpoint', type=str, default=None,
help='File with the checkpoint to start with')
parser.add_argument('--seed', type=int, default=99,
help='Seed for random generation')
parser.add_argument('--image_dir', type=str, default='images',
help='Image dir to save image')
parser.add_argument('--model_dir', type=str, default='./model/gan',
help='Image dir to save model checkpoints')
parser.add_argument('--num_epochs', type=int, default=None,
help='Number of epochs to train the model')
parser.add_argument('--num_patches', type=int,
help='Number of tiles to use per slide', default=250)
parser.add_argument('--gan_type', type=str, default='dcgan',
help='Architecture to use')
parser.add_argument('--loss_type', type=str, default='wgangp',
help='Loss type to use')
args = parser.parse_args()
#np.random.seed(args.seed)
#torch.manual_seed(args.seed)
with open(args.config) as f:
config = json.load(f)
print(10*'-')
print('Config for this experiment \n')
print(config)
print(10*'-')
if 'flag' in config:
args.flag = config['flag']
else:
args.flag = 'train_{date:%Y-%m-%d %H:%M:%S}'.format(date=datetime.datetime.now())
if not os.path.exists(args.image_dir):
os.mkdir(args.image_dir)
path_csv = config['path_csv']
batch_size = 8
encoder_checkpoint = config.get('encoder_checkpoint', None)
patch_data_path = config['patch_data_path']
save_dir = config['save_dir']
img_size = config['img_size']
max_patch_per_wsi = args.num_patches
quick = False
bag_size = config.get('bag_size', 40)
print('Number of available GPUs: {}'.format(torch.cuda.device_count()))
print('Loading dataset...')
transforms_ = nn.Sequential(
#transforms.ToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=(0.5,), std=(0.5,)))
datasets = []
for id, (dataset, path) in enumerate(zip(path_csv, patch_data_path)):
print(dataset)
data_paths_train = []
data_paths_val = []
df = pd.read_csv(dataset)
data_paths_train = [path] * df.shape[0]
df['patch_data_path'] = data_paths_train
label = [id] * df.shape[0]
df['labels'] = label
datasets.append(df)
if(len(datasets) >=2):
train_df = pd.concat([datasets[0], datasets[1]])
for i in range(2, len(datasets)):
train_df = pd.concat([train_df, datasets[i]])
else:
train_df = datasets[0]
if args.loss_type == 'wganvae':
print(f"Using {args.loss_type}")
def _get_log(x):
# trick to take into account zeros
x = np.log(x.replace(0, np.nan))
return x.replace(np.nan, 0)
# get list of columns to scale
rna_columns = [x for x in train_df.columns if 'rna_' in x]
non_rna_columns = [x for x in train_df.columns if 'rna_' not in x]
# log transform
train_df[rna_columns] = train_df[rna_columns].apply(_get_log)
train_df = train_df[rna_columns+non_rna_columns]
rna_values = train_df[rna_columns].values
scaler = StandardScaler()
rna_values = scaler.fit_transform(rna_values)
train_df[rna_columns] = rna_values
train_dataset = PatchRNADataset(patch_data_path, train_df, img_size,
max_patches_total=max_patch_per_wsi,
transforms=transforms_,
quick=quick)
else:
train_dataset = PatchDataset(patch_data_path, train_df, img_size,
max_patches_total=max_patch_per_wsi,
transforms=transforms_,
quick=quick)
if args.loss_type == 'wganvae':
train_dataloader = DataLoader(train_dataset, batch_size=batch_size,
num_workers=4, pin_memory=True, collate_fn=custom_collate_fn_wganvae)
else:
train_dataloader = DataLoader(train_dataset, batch_size=batch_size,
num_workers=4, pin_memory=True, collate_fn=custom_collate_fn)
# training
print('Finished loading dataset and creating dataloader')
print('Initializing models')
if args.gan_type == 'dcgan':
generator = DCGANGenerator
discriminator = DCGANDiscriminator
arguments_generator = {
"encoding_dims": 2048,
"out_channels": 3,
"step_channels": 64,
"out_size": 256,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.Tanh(),
}
arguments_discriminator = {
"in_size": 256,
"in_channels": 3,
"step_channels": 64,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.LeakyReLU(0.2),
}
elif args.gan_type == 'condgan':
generator = ConditionalGANGenerator
discriminator = ConditionalGANDiscriminator
arguments_generator = {
"encoding_dims": 2048,
"out_channels": 3,
"step_channels": 32,
"out_size": 256,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.Tanh(),
}
arguments_discriminator = {
"in_size": 256,
"in_channels": 3,
"step_channels": 32,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.LeakyReLU(0.2),
}
elif args.gan_type == 'biggan':
generator = BigGanGenerator
discriminator = BigGanDiscriminator
arguments_generator = {
"encoding_dims": 2048,
"out_channels": 3,
"step_channels": 32,
"out_size": 256,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.Tanh(),
"G_ch":64,
"dim_z":2048,
"resolution":256,
"n_classes": 2,
}
arguments_discriminator = {
"resolution":256,
"n_classes": 1,
"in_size": 256,
"in_channels": 3,
"step_channels": 32,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.LeakyReLU(0.2),
}
elif args.gan_type == 'sagan':
generator = SAGANGenerator
discriminator = SAGANDiscriminator
arguments_generator = {
"encoding_dims": 2048,
"step_channels": 32
}
arguments_discriminator = {
"step_channels": 32,
}
else:
raise "Model proposed not implemented"
gan_network = {
"generator": {
"name": generator,
"args": arguments_generator,
"optimizer": {"name": Adam, "args": {"lr": 0.0001, "betas": (0.5, 0.999)}},
},
"discriminator": {
"name": discriminator,
"args": arguments_discriminator,
"optimizer": {"name": Adam, "args": {"lr": 0.0004, "betas": (0.5, 0.999)}},
},
}
if args.gan_type == 'condgan':
gan_network['generator']['args']['num_classes'] = len(path_csv)
gan_network['discriminator']['args']['num_classes'] = len(path_csv)
if args.loss_type == 'minimax':
losses = [MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()]
elif args.loss_type == 'wgan':
losses = [
WassersteinGeneratorLoss(),
WassersteinDiscriminatorLoss(clip=(-0.01, 0.01)),
WassersteinGradientPenalty(),
]
elif args.loss_type == 'wganvae':
losses = [
WassersteinGeneratorLossVAE(checkpoint='checkpoints/betavae_training_tissues/model_dict_best.pt', rna_features=19198),
WassersteinDiscriminatorLossVAE(checkpoint='checkpoints/betavae_training_tissues/model_dict_best.pt', rna_features=19198),
WassersteinGradientPenaltyVAE(checkpoint='checkpoints/betavae_training_tissues/model_dict_best.pt', rna_features=19198),
]
elif args.loss_type == 'lsgan':
losses = [LeastSquaresGeneratorLoss(), LeastSquaresDiscriminatorLoss()]
else:
assert f"Loss type {args.loss_type} not implemented. \
Choose between minimax, wgangp, lsgan or wganvae."
if torch.cuda.is_available():
device = torch.device("cuda:0")
# Use deterministic cudnn algorithms
torch.backends.cudnn.deterministic = True
epochs = args.num_epochs
else:
device = torch.device("cpu")
epochs = 5
print("Device: {}".format(device))
print("Epochs: {}".format(epochs))
trainer = Trainer(
gan_network, losses, checkpoints=args.model_dir,
sample_size=64, epochs=epochs, devices=[0],
recon=args.image_dir
)
"""
Snippet for generating data:
generator = getattr(trainer, "generator")
test_noise = getattr(trainer, "generator").sampler(trainer.sample_size, trainer.device)
images = generator(test_noise[0])
"""
if args.checkpoint is not None:
trainer.load_model(load_path=args.checkpoint)
trainer(train_dataloader)