-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathml_experiments.py
379 lines (317 loc) · 14.1 KB
/
ml_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from genericpath import exists
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import os
from torch.utils.data import Dataset
from torchvision.io import read_image
import torchvision
import pandas as pd
from sklearn.model_selection import train_test_split
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.optim import AdamW
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import f1_score
from sklearn.preprocessing import LabelEncoder
import argparse
import pickle
from read_data import PatchBagDatasetHDF5
import resnet
torch.manual_seed(99)
np.random.seed(99)
torch.cuda.manual_seed(99)
class AggregationModel(nn.Module):
def __init__(self, resnet, resnet_dim=512, num_outputs=2, use_pretrain=False):
super(AggregationModel, self).__init__()
self.resnet = resnet
self.resnet_dim = resnet_dim
self.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(resnet_dim, num_outputs)
)
self.use_pretrain = use_pretrain
def forward_extract(self, x):
(batch_size, bag_size, c, h, w) = x.shape
x = x.reshape(-1, c, h, w)
features = self.resnet.forward_extract(x)
features = features.view(batch_size, bag_size, self.resnet_dim)
features = features.mean(dim=1)
return features
def forward(self, x):
features = self.forward_extract(x)
return self.fc(features)
def train(model, criterion, optimizer, dataloaders, transforms,
save_dir='checkpoints/models/', device='cpu',
log_interval=100, summary_writer=None, num_epochs=100,
scheduler=None, verbose=True):
"""
Train classification/regression model.
Parameters:
model (torch.nn.Module): Pytorch model already declared.
criterion (torch.nn): Loss function
optimizer (torch.optim): Optimizer
dataloaders (dict): dict containing training and validation DataLoaders
transforms (dict): dict containing training and validation transforms
save_dir (str): directory to save checkpoints and models.
device (str): device to move models and data to.
log_interval (int):
summary_writer (TensorboardX): to register values into tensorboard
num_epochs (int): number of epochs of the training
verbose (bool): whether or not to display metrics during training
Returns:
train_results (dict): dictionary containing the labels, predictions,
probabilities and accuracy of the model on the dataset.
"""
best_epoch = 0
best_loss = np.inf
best_outputs = {'train': [], 'val': {}}
loss_array = {'train': [], 'val': []}
accuracy = {'train': [], 'val':[]}
global_summary_step = {'train': 0, 'val': 0}
# Creates once at the beginning of training
# scaler = torch.cuda.amp.GradScaler()
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
sizes = {'train': 0, 'val': 0}
inputs_seen = {'train': 0, 'val': 0}
running_outputs = {'train': [], 'val': []}
running_labels = {'train': [], 'val': []}
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0.0
summary_step = global_summary_step[phase]
output_list = []
for batch in tqdm(dataloaders[phase]):
wsi = batch[0]
labels = batch[1]
size = wsi.size(0)
labels = labels.to(device)
wsi = wsi.to(device)
wsi = transforms[phase](wsi)
optimizer.zero_grad()
with torch.set_grad_enabled(phase=='train'):
# Casts operations to mixed precision
#with torch.cuda.amp.autocast():
outputs = model(wsi)
#output_list.append(outputs.detach().cpu().numpy().flatten())
# saving running outputs
#running_outputs[phase].append(outputs.detach().cpu().numpy())
#running_labels[phase].append(labels.cpu().numpy())
_, preds = torch.max(outputs,1)
loss = criterion(outputs, labels)
if phase == 'train':
# Scales the loss, and calls backward()
# to create scaled gradients
loss.backward()
# Unscales gradients and calls
optimizer.step()
summary_step += 1
running_loss += loss.item() * wsi.size(0)
sizes[phase] += size
inputs_seen[phase] += size
running_corrects += torch.sum(preds == labels)
# Emptying memory
outputs = outputs.detach()
loss = loss.detach()
torch.cuda.empty_cache()
global_summary_step[phase] = summary_step
epoch_loss = running_loss / sizes[phase]
epoch_acc = running_corrects / sizes[phase]
loss_array[phase].append(epoch_loss)
#output_list = np.concatenate(output_list, axis=0)
print('{} Loss: {:.4f}, Acc.: {:.4f}'.format(phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_loss < best_loss:
best_loss = epoch_loss
torch.save(model.state_dict(), os.path.join(save_dir, 'model_dict_best.pt'))
best_epoch = epoch
#best_outputs['val'] = running_outputs['val']
#best_outputs['train'] = running_outputs['train']
model.load_state_dict(torch.load(os.path.join(save_dir, 'model_dict_best.pt')))
results = {
'best_epoch': best_epoch,
'best_loss': best_loss,
#'best_outputs_val': np.array(best_outputs['val']).flatten(),
#'best_outputs_train': np.array(best_outputs['train']).flatten(),
#'labels_val': np.array(running_labels['val']).flatten(),
#'labels_train': np.array(running_labels['train']).flatten()
}
return model, results
def evaluate(model, dataloader, dataset_size, transforms, criterion,
device='cpu', verbose=True):
"""
Evaluate classification model on test set
Parameters:
model (torch.nn.Module): Pytorch model already declared.
dataloasder (torch.utils.data.DataLoader): dataloader with the dataset
dataset_size (int): Size of the dataset.
transforms (torch.nn.Sequential): Transforms to be applied to the data
device (str): Device to move the data to. Default: cpu.
verbose (bool): whether or not to display metrics at the end
Returns:
test_results (dict): dictionary containing the labels, predictions,
probabilities and accuracy of the model on the dataset.
"""
model.eval()
probabilities = []
running_acc = []
losses = []
all_labels = []
all_preds = []
for batch in tqdm(dataloader):
wsi = batch[0]
labels = batch[1]
wsi = wsi.to(device)
wsi = transforms(wsi)
labels = labels.to(device)
with torch.set_grad_enabled(False):
outputs = model(wsi)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs,1)
probabilities.append(outputs.detach().to('cpu').numpy())
losses.append(loss.detach().item())
all_labels.append(labels.detach().to('cpu').numpy())
all_preds.append(preds.detach().to('cpu').numpy())
probabilities = np.concatenate(probabilities, axis=0).flatten()
preds = np.concatenate(all_preds, axis=0).flatten()
labels = np.concatenate(all_labels, axis=0)
accuracy = np.sum(preds == labels) / dataset_size
f1_scores = f1_score(labels, preds, average='weighted')
print('Loss of the model {}; Acc. {}'.format(np.mean(losses), accuracy))
test_results = {
'outputs': probabilities,
'real_labels': labels,
'preds': preds,
'losses': losses,
'accuracy': accuracy,
'f1-score': f1_scores
}
return test_results
class ResnetSSL(torch.nn.Module):
def __init__(self, backbone, dim=2048, num_classes=2):
super(ResnetSSL, self).__init__()
self.backbone = backbone
self.linear = torch.nn.Linear(2048, num_classes)
self.softmax = torch.nn.Softmax()
def forward(self, x):
x = self.backbone(x).flatten(start_dim=1)
x = self.linear(x)
x = self.softmax(x)
return x
def forward_extract(self, x):
x = self.backbone(x).flatten(start_dim=1)
return x
class TileDataset(Dataset):
def __init__(self, csv_file):
self.images = csv_file['wsi_file_name'].values
self.labels = csv_file['label'].values
assert len(self.images) == len(self.labels)
def __len__(self):
return len(self.images)
def __getitem__(self,x):
img = read_image(self.images[x])
label = torch.tensor(self.labels[x], dtype=torch.long)
return img, label
def pretrain_ml_experiment(csv_path,
save_dir='pretrain_ml_experiment',
use_pretrain=True,
classes=None,
patch_data_path='_Patches256x256_hdf5'):
""" Experiment using pretrained weights on the GBM vs LUAD task
Args:
csv_path (pandas.DataFrame): File containing the paths and labels of real data
"""
if not os.path.exists(save_dir): os.mkdir(save_dir)
data = pd.read_csv(csv_path)
data = data.loc[data.label.isin(['TCGA-LUAD', 'TCGA-GBM'])]
classes = np.unique(data.label.values)
batch_size = 4
test_results_splits = {}
# testting on a k-fold cv on the real data
test_accs = []
test_f1s = []
kf = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 99)
sp = 0
for split in kf.split(X=data,y=data.label.values):
if use_pretrain:
# Load model here
resnet50 = torchvision.models.resnet50()
backbone_new = nn.Sequential(*list(resnet50.children())[:-1])
ckpt = torch.load("resnet50_simclr_rnagan.pth")
backbone_new.load_state_dict(ckpt["resnet50_parameters"])
model = ResnetSSL(backbone_new)
else:
model = torchvision.models.resnet50()
model = model.cuda(0)
optimizer = AdamW(model.parameters(), weight_decay = 0.01, lr=3e-5)
criterion = nn.CrossEntropyLoss()
test_df = data.iloc[split[1]]
train_df = data.iloc[split[0]]
train_df, val_df = train_test_split(train_df, test_size=0.1, stratify=train_df['label'], random_state=99)
le = LabelEncoder()
le.fit(classes)
train_df.label = le.transform(train_df.label.values)
val_df.label = le.transform(val_df.label.values)
test_df.label = le.transform(test_df.label.values)
transforms_ = torch.nn.Sequential(
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])).cuda(0)
transforms_val = torch.nn.Sequential(
transforms.ConvertImageDtype(torch.float32),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])).cuda(0)
transforms_both = {
'train': transforms_,
'val': transforms_val
}
train_dataset = TileDataset(train_df)
val_dataset = TileDataset(val_df)
test_dataset = TileDataset(test_df)
num_workers=4, pin_memory=True,
shuffle=True, batch_size=batch_size)
val_dataloader = DataLoader(val_dataset, num_workers=4,
pin_memory=True, shuffle=False, batch_size=batch_size)
test_dataloader = DataLoader(test_dataset,
num_workers=4, pin_memory=True, shuffle=False, batch_size=batch_size)
dataloaders = {
'train': train_dataloader,
'val': val_dataloader
}
model, _ = train(model, criterion, optimizer, dataloaders, transforms_both,
save_dir=save_dir,
device='cuda:0',
num_epochs=40)
test_results = evaluate(model, test_dataloader, len(test_dataset),
transforms_val, criterion=criterion, device='cuda:0')
name_sp = 'split_'+str(sp)
test_results_splits[name_sp] = test_results
test_accs.append(test_results['accuracy'])
test_f1s.append(test_results['f1-score'])
sp += 1
print(10*'-')
print(test_accs)
print(f'Test acc. {np.mean(test_accs)}+-{np.std(test_accs)}')
print(test_f1s)
print(f'Test f1. {np.mean(test_f1s)}+-{np.std(test_f1s)}')
print(10*'-')
with open(os.path.join(save_dir,'gbmvsluad_experiment_test.pkl'), 'wb') as f:
pickle.dump(test_results_splits, f, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='GBM vs LUAD experiment')
parser.add_argument('--csv_path', type=str, help='CSV path with the real data')
parser.add_argument('--save_dir', type=str, help='Directory to save results')
parser.add_argument("--use_pretrain", help="if the pretrain experiments is carried out, using or not using pretraning",
action="store_true")
args = parser.parse_args()
# Arguments
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
pretrain_ml_experiment(args.csv_path,
save_dir=args.save_dir,
use_pretrain=args.use_pretrain)