-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocessing.R
423 lines (270 loc) · 16 KB
/
preprocessing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
####################################################################################################
####### Global occurrences and predictors of activity of #############
####### Glacier Lake Outburst Floods #############
####### #############
####### by Georg Veh #############
####### V1.1: 12 Nov, 2020 #############
####### V1.2: 11 Jan, 2021 #############
####### V1.3: 02 Feb, 2021 #############
####### V1.4: 01 Mar, 2021 #############
####### V1.5: 08 Jul, 2021 #############
####################################################################################################
########### Data grooming ##########################################################################
# Load the following packages, or use install.packages("nameofpackage"), if some of them
# are not pre-installed. In some cases you need to restart your R session.
require(readODS)
require(raster)
require(tidyverse)
require(sf)
require(tsibble)
# Set YOUR working directory folder where to find all files, necessary to run this script.
# Change the location appropriately.
setwd("C:/Users/local-admin/Desktop/Plots_GLOFs_global/")
# Open-office spreadsheet with GLOFs per region in separate sheets.
glof.file <- "Global_GLOF_database_2021_06_09.ods"
# Get names of the sheets and append 'Global' for the summary of all.
sheetnames <- list_ods_sheets(glof.file)
sheetnames <- c(sheetnames, "Global")
# Data on possible predictors of GLOF activity.
# I: Global gridded temperature and precipitation from the CRU TS 4.05 data set in netCDF format.
# Navigate to the sources below and unzip the data to your working directory.
# Source for tmp: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/tmp/cru_ts4.05.1901.2020.tmp.dat.nc.gz
# Source for precip: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/pre/cru_ts4.05.1901.2020.pre.dat.nc.gz
# Load the entire netCDF as a stack of rasters into memory.
cru.tmp <- raster::stack("cru_ts4.05.1901.2020.tmp.dat.nc")
cru.pre <- raster::stack("cru_ts4.05.1901.2020.pre.dat.nc")
# II: Glaciological measurements from the Fluctuations of Glaciers (FoG) Database.
# Navigate to the source below and unzip the data into its own folder in your working directory.
# Source: http://wgms.ch/downloads/DOI-WGMS-FoG-2020-08.zip ; DOI: 10.5904/wgms-fog-2020-08
# File with all glaciers in the WGMS database.
wgms <- read_csv("DOI-WGMS-FoG-2020-08/WGMS-FoG-2020-08-A-GLACIER.csv",
col_names = T)
# WGMS glaciers with in-situ measured mass balances.
mb <- read_csv("DOI-WGMS-FoG-2020-08/WGMS-FoG-2020-08-E-MASS-BALANCE-OVERVIEW.csv",
col_names = T)
# WGMS glaciers with measured front variations.
front <- read_csv("DOI-WGMS-FoG-2020-08/WGMS-FoG-2020-08-C-FRONT-VARIATION.csv",
col_names = T)
# WGMS glaciers with geodetic changes.
dch <- read_csv("DOI-WGMS-FoG-2020-08/WGMS-FoG-2020-08-D-CHANGE.csv",
col_names = T, guess_max = 1500)
# Shapefile with all regions of interest.
# Navigate to the source below and unzip the data into its own folder in your working directory.
# https://github.com/geveh/ReportingBias/raw/main/Region_extents.zip
reg.pol <- st_read("Region_extents/Extent_pol.shp")
# Convert all glaciers in the WGMS database to points.
wgms.points <- wgms %>%
drop_na(c("LATITUDE", "LONGITUDE")) %>%
st_as_sf(coords = c("LONGITUDE", "LATITUDE"), crs = 4326)
# Use plot(wgms.points) to show the global distribution of glaciers.
# Make the coordinate reference system of the glacier points identidcal to that of the regions.
wgms.merc <- st_transform(wgms.points, crs = projection(reg.pol))
# Find all unique entries of glaciers with available data of either glaciological,
# geodetic, or length change measurements.
uni.mb <- unique(mb$WGMS_ID)
uni.front <- unique(front$WGMS_ID)
uni.dch <- unique(dch$WGMS_ID)
# Create a list for each region separately (items 1-7) and for all for all regions together (last item).
# At the end of following loop, each list element receives a table of
# the annual number of reported GLOFs,
# the number of glaciological measurements,
# and statistics of temperature and precipitation.
region.list <- list()
# Iterate over the names of the spreadsheet.
for(r in sheetnames) {
# Distinguish whether to obtain data only for a specific region, or all regions together.
# Load the corresponding sheet into memory and
# find all glaciers with glaciological surveys in that region (g.sub).
if (r != "Global") {
data <- as_tibble(read_ods(glof.file, sheet = r))
data <- data[-c(1:2), 1:33]
data$region <- r
if (r == "Other") {
tf <- (wgms.merc$GLACIER_SUBREGION_CODE %in% "CAU-01") | (wgms.merc$GLACIER_SUBREGION_CODE %in% "NZL")
} else { tf <- st_intersects(reg.pol[reg.pol$Region == r, ], wgms.merc) }
g.sub <- wgms.merc[tf[[1]], ] }
if (r == "Global") {
# For the global assessment, iterate over all sheets and bind the outcome together.
glof.list <- list()
for (z in 1 : length(list_ods_sheets(glof.file))) {
glofs.all <- read_ods(glof.file, sheet = z)
glofs.all <- glofs.all[-c(1:2), 1:33 ]
glofs.all$region <- list_ods_sheets(glof.file)[z]
glof.list[[z]] <- glofs.all
}
data <- as_tibble(do.call(rbind, glof.list))
tf <- st_intersects(reg.pol, wgms.merc)
g.sub <- wgms.merc[unlist(tf), ]
}
# Extract all years of measured mass balances in a given region.
years.mb <- sapply(uni.mb, function (y) {
if (y %in% g.sub$WGMS_ID) {
return( mb$Year[mb$WGMS_ID %in% y])
}
})
# Extract all years of measured front variations in a given region.
years.front <- sapply(uni.front, function (y) {
if (y %in% g.sub$WGMS_ID) {
return( front$Year[front$WGMS_ID %in% y])
}
})
# Extract all years of measured geoedetic mass balances in a given region.
years.dch <- sapply(uni.dch, function (y) {
if (y %in% g.sub$WGMS_ID) {
return( dch$YEAR[dch$WGMS_ID %in% y])
}
})
# Generate a vector with the years of reported GLOF occurrences.
y <- as.numeric(str_sub(data$Date, 1, 4))
# Generate an dataframe with the number of rows equal to a vector
# that starts with the year of the first observed GLOF (or in 1901, if none happened before 1901),
# and that end in the year 2020.
min.y <- min(y, na.rm = T)
if(min.y < 1901) { all.years <- tibble(year = min.y : 2020) } else { all.years <- tibble(year = 1901 : 2020)}
# Pre-assign zero counts for GLOFs from all lake types, moraine-dammed lakes, ice-dammed lakes,
# and unknown sources.
all.years <- all.years %>%
mutate(freq = 0,
moraine = 0,
ice = 0,
other = 0,
volc = 0)
# Extract the years of reported GLOF occurrences.
for (i in 1 : length(y)) {
lake.type <- data$Lake_type[i]
# Some years are NA because these GLOFs have no fixed date of occurrence, but a range of possible dates instead.
# For example, some GLOFs were detected from satellite images and offer only the last image before and the
# next image after the GLOF.
# If there is NA, we first check whether there is a given range of dates.
# If so, we then randomly sample for the range of plausible years.
# Finally we increase the observed GLOF count for that dam type in that year by +1.
if (is.na(y[i])) {
min.date <- as.numeric(str_sub(data$Date_Min[i], 1, 4))
max.date <- as.numeric(str_sub(data$Date_Max[i], 1, 4))
if((!is.na(min.date)) & (!is.na(max.date))) {
obs.period <- min.date:max.date
random.year <- sample(obs.period, size = 1)
all.years$freq[grep(pattern = random.year, x = all.years$year)] <- all.years$freq[grep(pattern = random.year, x = all.years$year)] + 1
if (length(grep("^moraine$", lake.type)) == 1) {
all.years$moraine[grep(pattern = random.year, x = all.years$year)] <- all.years$moraine[grep(pattern = random.year, x = all.years$year)] + 1
} else if (length(grep("^ice$", lake.type)) == 1) {
all.years$ice[grep(pattern = random.year, x = all.years$year)] <- all.years$ice[grep(pattern = random.year, x = all.years$year)] + 1
} else if (length(grep("volc", lake.type)) == 1) {
all.years$volc[grep(pattern = random.year, x = all.years$year)] <- all.years$volc[grep(pattern = random.year, x = all.years$year)] + 1
} else {
all.years$other[grep(pattern = random.year, x = all.years$year)] <- all.years$other[grep(pattern = random.year, x = all.years$year)] + 1
}
y[i] <- random.year
}
} else {
# If there an exact year for the GLOF, we just add that year to the existing count.
all.years$freq[grep(pattern = y[i], x = all.years$year)] <- all.years$freq[grep(pattern = y[i], x = all.years$year)] + 1
if (length(grep("^moraine$", lake.type)) == 1) {
all.years$moraine[grep(pattern = y[i], x = all.years$year)] <-all.years$moraine[grep(pattern = y[i], x = all.years$year)] + 1
} else if (length(grep("^ice$", lake.type)) == 1) {
all.years$ice[grep(pattern = y[i], x = all.years$year)] <- all.years$ice[grep(pattern = y[i], x = all.years$year)] + 1
} else if (length(grep("volc", lake.type)) == 1) {
all.years$volc[grep(pattern = y[i], x = all.years$year)] <- all.years$volc[grep(pattern = y[i], x = all.years$year)] + 1
} else {
all.years$other[grep(pattern = y[i], x = all.years$year)] <- all.years$other[grep(pattern = y[i], x = all.years$year)] + 1
}
}
}
# Append the year column to the data.frame
data <- data %>%
mutate(rounded_year = y)
y[is.na(y)] <- 0
# Now add the data of glacier surveys per year
all.years <- all.years %>%
mutate(mb_meas = 0,
front_meas = 0,
dch_meas = 0)
# For each type of glaciological surveys,
# - count the number of measurements per year,
# - delete all measurements that were done before the first GLOF was reported,
# - match the year of GLOF with the glaciologcial measurement, and
# - add that to the dataframe of all.years
t.mb <- table(unlist(years.mb))
t.mb <- t.mb[!(as.numeric(names(t.mb)) < min(all.years$year, na.rm = T))]
m.mb <- match(as.numeric(names(t.mb)), all.years$year)
all.years$mb_meas[m.mb] <- as.numeric(t.mb)
t.front <- table(unlist(years.front))
t.front <- t.front[!(as.numeric(names(t.front)) < min(all.years$year, na.rm = T))]
m.front <- match(as.numeric(names(t.front)), all.years$year)
all.years$front_meas[m.front] <- as.numeric(t.front)
t.dch <- table(unlist(years.dch))
t.dch <- t.dch[!(as.numeric(names(t.dch)) < min(all.years$year, na.rm = T))]
m.dch <- match(as.numeric(names(t.dch)), all.years$year)
all.years$dch_meas[m.dch] <- as.numeric(t.dch)
all.years <- all.years %>%
rowwise(year) %>%
mutate(all_meas = sum(c(mb_meas, front_meas, dch_meas)),
mb_and_front = sum(c(mb_meas, front_meas)))
glofs.1901 <- all.years %>%
filter(year >= 1901 & year <= 2020) %>%
add_column(region = r) %>%
add_column(year_scale = as.numeric(scale(.$year)))
# Select from the inital data.frame all GLOFs that happened between 1901 and 2020 and
# that are of non-volcanic origin.
glofs.1901.all <- data[(y >= 1901) & (y <= 2020) & (!grepl("volc", data$Lake_type)), ]
#### Obtain temperature and precipitation from all GLOF source locations.
# First, convert all GLOFs with dates and coordinates to a point shapefile.
glof.points <- glofs.1901.all %>%
distinct(Latitude, Longitude) %>%
drop_na(c("Latitude", "Longitude")) %>%
st_as_sf(coords = c( "Longitude", "Latitude"), crs = 4326)
# Extract temperatures from all grid cells in the stacked layers of temperature.
# Each year has 12 layers (i.e. one per month) for the period 1901 to 2020.
temp.ts <- raster::extract(cru.tmp, glof.points)
# There are duplicate time series, because several GLOFs might have happened in a grid cell.
# Remove these entries, and convert to a tibble, in which the rows are the months and
# the columns are all extracted time series of temperature.
temp.p <- apply(temp.ts, 1, function (x) paste0(x, collapse = ","))
temp.cells <- temp.ts[!duplicated(temp.p), ]
temp.cells.tibble <- as_tibble(t(as.matrix(temp.cells)))
# There is a special format for handling time-stamped entries in a tibbles, called the tsibble.
temp.ts <- tsibble(temp.cells.tibble,
ym = seq(as.Date("1901-01-01"),
as.Date("2020-12-31"),
by = "1 month"),
index = ym)
# Calculate the annual mean air temperature and the 25th and 75th percentile.
# Could choose other quantiles as well.
annual.temp <- temp.ts %>%
index_by(year = ~ year(.)) %>%
filter(year >= 1901 & year <= 2020) %>%
summarise(temp_mean = mean(c_across(starts_with("V"))),
temp_q25 = quantile(c_across(starts_with("V")), 0.25),
temp_q75 = quantile(c_across(starts_with("V")), 0.75))
# Append the temperature statistics to the original dataframe storing the GLOF
# counts per year.
glofs.1901 <- left_join(glofs.1901, annual.temp, by = "year")
# Now do the same for precipitation, just calculating the annual sum of precipitation
# instead of the mean.
pre.ts <- raster::extract(cru.pre, glof.points)
pre.p <- apply(pre.ts, 1, function (x) paste0(x, collapse = ","))
pre.cells <- pre.ts[!duplicated(pre.p), ]
pre.cells.tibble <- as_tibble(t(as.matrix(pre.cells)))
pre.ts <- tsibble(pre.cells.tibble,
ym = seq(as.Date("1901-01-01"),
as.Date("2020-12-31"),
by = "1 month"),
index = ym)
# Calculate the mean precipitation from all cells and then sum over the entire year.
o <- pre.ts %>% rowwise() %>% mutate(avg = mean(c_across(starts_with("V"))))
o <- tsibble(o, index = ym)
annual.pre <- o %>%
index_by(year = ~ year(.)) %>%
filter(year >= 1901 & year <= 2020) %>%
summarise(pre_sum = sum(avg))
# Append the temperature statistics to the original dataframe storing the GLOF
# counts per year.
glofs.1901 <- left_join(glofs.1901, annual.pre, by = "year")
# Finally, add this dataframe to the list generated before the loop to save the regional
# statistics on GLOFs, temperature, precipitation, and glaciological research activity.
region.list[[r]] <- glofs.1901
}
# Save GLOF counts, temperature, and glacier survey between 1901 and 2020 for each region.
saveRDS(object = region.list, file = "regional_glof_stats.rds")
# Save GLOF table for all regions 1901-2018 (last iteration in the loop)
saveRDS(object = glofs.1901.all, file = "glofs_1901_2018.rds")