-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdynamic_selection_functions.py
executable file
·334 lines (235 loc) · 12.7 KB
/
dynamic_selection_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
def load_pickle_dynamic(id_models, path_id):
from pickle_functions import load_pickle
from generate_results_fuctions import load_model
dataset = {}
for id_model in id_models:
df_pickle = load_pickle(path_id + id_model)
print(path_id + id_model)
if id_model[0:4] == 'lstm':
model = load_model(df_pickle['model'], id_model)
else:
model = df_pickle['model']
dataset[path_id + id_model] = dict(model=model, training_sample=df_pickle['training_sample'],
validation_sample=df_pickle['validation_sample'],
window_size=df_pickle['window_size'], lag=df_pickle['lag'],
testing_sample=df_pickle['testing_sample'],
total_sample=df_pickle['total_sample'])
return dataset
def get_maximum_ws(id_models):
m_ws = 0
m_id = ''
for id_model in id_models:
if m_ws < int(id_model[-2:]):
m_ws = int(id_model[-2:])
m_id = id_model
return m_id, m_id[-2:]
def combine_training_and_validation_data(training_sample, validation_sample):
from numpy import concatenate
return concatenate((training_sample, validation_sample))
def pre_process_dynamic_selection_data(dataset, key):
training_sample = dataset[key]['training_sample'] # Valor real
validation_sample = dataset[key]['validation_sample'] # Valor real
if validation_sample != []:
training_sample = combine_training_and_validation_data(training_sample, validation_sample)
testing_sample = dataset[key]['testing_sample'] # Valor real
return training_sample, testing_sample
def process_data_dynamic(dataset, path_id, max_lag_model, max_ws):
d_rs = {}
test_size = len(dataset[path_id + max_lag_model]['testing_sample']) # Valor real
train, test = pre_process_dynamic_selection_data(dataset, path_id + max_lag_model)
d_rs[max_ws + 'train'] = train
d_rs[max_ws + 'test'] = test
d_rs['test_size'] = test_size
return d_rs, test_size
def calculate_the_distance_between_the_windows(training_sample, testing_sample):
from scipy.spatial.distance import euclidean
competence_region = []
for i_training in range(0, len(training_sample)):
d = euclidean(testing_sample, training_sample[i_training, 0:-1])
competence_region.append(d)
return competence_region
def collect_the_competence_region(training_sample, competence_region, len_competence_region):
indices_patterns = range(0, len(training_sample))
competence_region, indices_patterns = zip(
*sorted(zip(competence_region, indices_patterns)))
indices_patterns_l = list(indices_patterns)
k_patterns_x = training_sample[:, 0:-1][indices_patterns_l[0:len_competence_region]]
k_patterns_y = training_sample[:, -1][indices_patterns_l[0:len_competence_region]]
return k_patterns_x, k_patterns_y, indices_patterns_l[0:len_competence_region]
def region_competence_pipeline(crs, d_rs, max_ws, test_size):
for i_test in range(0, test_size):
cr = calculate_the_distance_between_the_windows(d_rs[max_ws + 'train'], d_rs[max_ws + 'test'][i_test, 0:-1])
x_cr, y_cr, indices_cr = collect_the_competence_region(d_rs[max_ws + 'train'], cr, crs)
d_rs[str(i_test) + max_ws + 'x_cr'] = x_cr
d_rs[str(i_test) + max_ws + 'y_cr'] = y_cr
d_rs[str(i_test) + max_ws + 'indices_cr'] = indices_cr
d_rs[str(i_test) + max_ws + 'dk'] = calculate_the_distance_vector(cr, crs)
def calculate_the_distance_vector(competence_region, len_competence_region):
vector_weight = []
bottom = 0
for weight_p_competence_region_j in competence_region[0:len_competence_region]:
bottom += (1 / weight_p_competence_region_j)
for weight_p_competence_region_k in competence_region[0:len_competence_region]:
vector_weight.append((1 / weight_p_competence_region_k) / bottom)
return vector_weight
def process_for_dealing_with_heterogeneous_lags(dataset, d_rs, id_models, path_id, max_ws):
from numpy import array
for id_model in id_models:
d_rs[id_model + 'model'] = dataset[path_id + id_model]['model']
lags = dataset[path_id + id_model]['lag']
if lags[-1] != int(max_ws):
lags = ((int(max_ws) - lags[-1]) + array(dataset[path_id + id_model]['lag']))
lags = lags.tolist()
d_rs[id_model + 'lag'] = lags
def predict_for_dynamic(model, name_model: str, window_for_arima: int, window_for_others: list, arima_type: str):
from generate_results_fuctions import predict_data
if name_model == 'arima':
y_pred = predict_data(window_for_arima, model, name_model, arima_type)
else:
y_pred = predict_data(window_for_others, model, name_model)
return y_pred
def sqe_new(y_pred, target_y: list):
vector_aux = []
for index in range(0, len(y_pred)):
vector_aux.append(((target_y[index] - y_pred[index]) ** 2)) # SQE
return vector_aux
def forecast_of_technical_models(accuracy_metric, d_rs, id_models, test_size, max_ws):
from accuracy_metrics import calculate_model_accuracy
for id_model in id_models:
for i_test in range(0, test_size):
model = d_rs[id_model + 'model']
lags = d_rs[id_model + 'lag']
y_pred = predict_for_dynamic(model, id_model, d_rs[str(i_test) + max_ws + 'indices_cr'],
d_rs[str(i_test) + max_ws + 'x_cr'][:, lags[: -1]], 'in_sample')
d_rs[str(i_test) + id_model + 'y_pred'] = y_pred
d_rs[str(i_test) + id_model + 'sqe'] = sqe_new(y_pred, d_rs[str(i_test) + max_ws + 'y_cr'])
d_rs[str(i_test) + id_model + accuracy_metric] = calculate_model_accuracy(y_pred,
d_rs[
str(i_test) + max_ws + 'y_cr'],
accuracy_metric)
def dynamic_selection_algorithms(path_id, id_models, dataset, accuracy_metric, crs):
# Receber id do modelo que obteve o maior lag
m_id, m_ws = get_maximum_ws(id_models)
d_rs, test_size = process_data_dynamic(dataset, path_id, m_id, m_ws)
region_competence_pipeline(crs, d_rs, m_ws, test_size)
process_for_dealing_with_heterogeneous_lags(dataset, d_rs, id_models, path_id, m_ws)
forecast_of_technical_models(accuracy_metric, d_rs, id_models, test_size, m_ws)
return d_rs, m_id, m_ws, test_size
def dynamic_selection(accuracy_metric: str, d_rs: dict, id_models: list, max_ws: str, path_id: str,
test_size: int, metric, deployment, approach):
from accuracy_metrics import calculate_model_accuracy
from pickle_functions import save_the_pre_defined_pickle
from numpy import Inf
from generate_results_fuctions import predict_data
predl = []
targetl = []
namel = []
for i_test in range(0, test_size):
better_result = Inf
name_model = ''
select_model = ''
window = []
target = []
for id_model in id_models:
model = d_rs[id_model + 'model']
lags = d_rs[id_model + 'lag']
result = calculate_model_accuracy(d_rs[str(i_test) + max_ws + 'y_cr'],
d_rs[str(i_test) + id_model + 'y_pred'], accuracy_metric)
if result < better_result:
better_result = result
name_model = id_model
select_model = model
window = d_rs[max_ws + 'test'][i_test, lags[0:-1]].reshape(1, -1)
#if name_model[0: 4] == 'lstm':
#select_model = 'pickle/' + path_id + id_model + '.h5'
if name_model[0: 5] == 'arima':
window = i_test + 1
target = d_rs[max_ws + 'test'][i_test, -1]
predl.append(predict_data(window, select_model, name_model, 'out_sample')[0])
targetl.append(target)
namel.append([name_model])
path_split = path_id.split('/', 4)
save_the_pre_defined_pickle(predl, targetl, namel, accuracy_metric,
path_split[0] + "/" + approach + '/' + metric + '/' + deployment + 'dynamic_selection')
def dynamic_weighting(path_id, id_models, dataset, accuracy_metric, d_rs, max_id_model, max_ws, test_size, metric,
deployment, approach):
from pickle_functions import save_the_pre_defined_pickle
for i_test in range(0, test_size):
for nm in id_models:
sqe = d_rs[str(i_test) + nm + 'sqe']
dk = d_rs[str(i_test) + max_ws + 'dk']
# Dk x sqe(k,i)
alpha_upper = []
for elemA, elemB in zip(sqe, dk):
alpha_upper.append(elemA * elemB)
# 1 / Somatório Dk x sqe(k,i)
d_rs[str(i_test) + nm + 'alpha_upper'] = 1 / sum(alpha_upper)
for i_test in range(0, test_size):
alpha_down = 0
for nm in id_models:
alpha_down += d_rs[str(i_test) + nm + 'alpha_upper']
for nm in id_models:
d_rs[str(i_test) + nm + 'alpha'] = d_rs[str(i_test) + nm + 'alpha_upper'] / alpha_down
# print('Conclusão DW')
predl = []
for i_test in range(0, test_size):
pred = 0
for nm in id_models:
lags = dataset[path_id + nm]['lag']
window = d_rs[max_ws + 'test'][i_test, lags[0:-1]].reshape(1, -1)
y_pred = predict_for_dynamic(d_rs[nm + 'model'], nm, i_test + 1, window, 'out_sample')
d_rs[str(i_test) + nm + 'y_pred_test'] = y_pred
pred += d_rs[str(i_test) + nm + 'alpha'] * y_pred
predl.append(sum(pred))
testing_sample = dataset[path_id + max_id_model]['testing_sample']
path_split = path_id.split('/', 4)
save_the_pre_defined_pickle(testing_sample[0:test_size, -1], predl, "", accuracy_metric,
path_split[0] + "/" + approach + '/' + metric + '/' + deployment + 'dynamic_weighting')
def dynamic_weighting_selection(path_id, id_models, dataset, accuracy_metric, d_rs, max_id_model, max_ws,
test_size, metric, deployment, approach):
from pickle_functions import save_the_pre_defined_pickle
for i_test in range(0, test_size):
am_error = []
for id_model in id_models:
am_error.append(d_rs[str(i_test) + id_model + accuracy_metric])
d_rs[str(i_test) + 'error_value'] = (max(am_error) - min(am_error)) / 2
new_id_models = []
for id_model in id_models:
if d_rs[str(i_test) + id_model + accuracy_metric] <= d_rs[str(i_test) + 'error_value']:
new_id_models.append(id_model)
if not new_id_models:
for id_model in id_models:
new_id_models.append(id_model)
d_rs[str(i_test) + 'new_id_models'] = new_id_models
for i_test in range(0, test_size):
for nidmodel in d_rs[str(i_test) + 'new_id_models']:
sqe = d_rs[str(i_test) + nidmodel + 'sqe']
dk = d_rs[str(i_test) + max_ws + 'dk']
# Dk x sqe(k,i)
alpha_upper = []
for elemA, elemB in zip(sqe, dk):
alpha_upper.append(elemA * elemB)
# 1 / Somatório Dk x sqe(k,i)
d_rs[str(i_test) + nidmodel + 'alpha_upper_dws'] = 1 / sum(alpha_upper)
for i_test in range(0, test_size):
alpha_down = 0
for nidmodel in d_rs[str(i_test) + 'new_id_models']:
alpha_down += d_rs[str(i_test) + nidmodel + 'alpha_upper_dws']
for nidmodel in d_rs[str(i_test) + 'new_id_models']:
d_rs[str(i_test) + nidmodel + 'alpha_dws'] = d_rs[str(i_test) + nidmodel + 'alpha_upper_dws'] / alpha_down
# print('Conclusão DWS')
predl = []
for i_test in range(0, test_size):
pred = 0
for nidmodel in d_rs[str(i_test) + 'new_id_models']:
lags = dataset[path_id + nidmodel]['lag']
window = d_rs[max_ws + 'test'][i_test, lags[0:-1]].reshape(1, -1)
y_pred = predict_for_dynamic(d_rs[nidmodel + 'model'], nidmodel, i_test + 1, window, 'out_sample')
d_rs[str(i_test) + nidmodel + 'y_pr ed_test'] = y_pred
pred += d_rs[str(i_test) + nidmodel + 'alpha_dws'] * y_pred
predl.append(sum(pred))
testing_sample = dataset[path_id + max_id_model]['testing_sample']
path_split = path_id.split('/', 4)
save_the_pre_defined_pickle(testing_sample[0:test_size, -1], predl, "", accuracy_metric,
path_split[
0] + "/" + approach + '/' + metric + '/' + deployment + 'dynamic_weighting_with_selection')