-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-xor.py
48 lines (40 loc) · 1.46 KB
/
test-xor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from neatpy import NEAT, visualize
import numpy as np
import random
import sys
xor_inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
xor_outputs = np.array([0, 1, 1, 0])
def evaluate_outputs(outputs):
x = np.abs(outputs - xor_outputs)
return (np.sum(x < 0.5) == 4)
def randomize_xor():
global xor_inputs, xor_outputs
li = list(zip(xor_inputs, xor_outputs.tolist()))
random.shuffle(li)
xor_inputs, xor_outputs = zip(*li)
xor_outputs = np.array(xor_outputs)
def xor_trained_neat():
neat = NEAT(150, 2, 1)
best = None
fitnesses = None
generation = 1
while True:
outputs = np.array(neat.feed_forward_list(xor_inputs))
fitnesses = np.square(4.0 - np.sum(np.abs(outputs - xor_outputs), axis=1))
best = np.argmax(fitnesses)
if evaluate_outputs(outputs[best]):
break
neat.repopulate(fitnesses)
randomize_xor()
generation += 1
return neat, generation, best, fitnesses[best]
if __name__ == "__main__":
trials = int(sys.argv[1]) if len(sys.argv) > 1 else 50
avg_generations = 0
trial = 1
for i in range(trials):
neat, generation, best, fitness = xor_trained_neat()
visualize.genome_to_png(neat[best], "results/trial{:03d}".format(trial), caption="Trial {}, Generation {}".format(trial, generation))
avg_generations += generation
trial += 1
print("Average generations over {} trials: {}".format(trials, avg_generations / trials))