diff --git a/_modules/ginkgo_ai_client/queries.html b/_modules/ginkgo_ai_client/queries.html index b5025ff..439b9a2 100644 --- a/_modules/ginkgo_ai_client/queries.html +++ b/_modules/ginkgo_ai_client/queries.html @@ -407,7 +407,7 @@
promoter_sequence: str
orf_sequence: str
tissue_of_interest: Dict[str, List[str]]
- source: str
+ source: str
model: str = "borzoi-human-fold0"
query_name: Optional[str] = None
@@ -702,41 +702,52 @@ Source code for ginkgo_ai_client.queries
query_name: Optional[str] = None
The name of the query. It will appear in the API response and can be used to
handle exceptions.
- """
-
- sequences: List[Dict[Literal["protein", "ligand"], Union[_Protein, _CCD, _Smiles]]]
- model: Literal["boltz"] = "boltz"
- query_name: Optional[str] = None
+
+ Examples
+ --------
+
+ .. code:: python
- def to_request_params(self) -> Dict:
- return {
- "model": "boltz",
- "transforms": [{"type": "INFER_STRUCTURE"}],
- "text": self.model_dump(exclude=["model", "query_name"], mode="json"),
- }
+ query = BoltzStructurePredictionQuery.from_yaml_file("input.yaml") # or below:
+ query = BoltzStructurePredictionQuery.from_protein_sequence("MLLKP")
+ response = client.send_request(query)
+ response.download_structure("structure.cif") # or below:
+ response.download_structure("structure.pdb")
+ """
- def parse_response(self, results: Dict) -> BoltzStructurePredictionResponse:
- return BoltzStructurePredictionResponse(
- cif_file_url=results["cif_file_url"],
- confidence_data=results["confidence_data"],
- query_name=self.query_name,
- )
-
- @classmethod
- def from_yaml_file(cls, path, query_name: Optional[str] = "auto"):
- path = Path(path)
- if query_name == "auto":
- query_name = path.name
- with open(path, "r") as f:
- data = yaml.load(f, yaml.SafeLoader)
- return cls(sequences=data["sequences"], query_name=query_name)
-
- @classmethod
- def from_protein_sequence(cls, sequence: str, query_name: Optional[str] = None):
- return cls(
- sequences=[{"protein": {"id": "A", "sequence": sequence}}],
- query_name=query_name,
- )
+ sequences: List[Dict[Literal["protein", "ligand"], Union[_Protein, _CCD, _Smiles]]]
+ model: Literal["boltz"] = "boltz"
+ query_name: Optional[str] = None
+
+ def to_request_params(self) -> Dict:
+ return {
+ "model": "boltz",
+ "transforms": [{"type": "INFER_STRUCTURE"}],
+ "text": self.model_dump(exclude=["model", "query_name"], mode="json"),
+ }
+
+ def parse_response(self, results: Dict) -> BoltzStructurePredictionResponse:
+ return BoltzStructurePredictionResponse(
+ cif_file_url=results["cif_file_url"],
+ confidence_data=results["confidence_data"],
+ query_name=self.query_name,
+ )
+
+ @classmethod
+ def from_yaml_file(cls, path, query_name: Optional[str] = "auto"):
+ path = Path(path)
+ if query_name == "auto":
+ query_name = path.name
+ with open(path, "r") as f:
+ data = yaml.load(f, yaml.SafeLoader)
+ return cls(sequences=data["sequences"], query_name=query_name)
+
+ @classmethod
+ def from_protein_sequence(cls, sequence: str, query_name: Optional[str] = None):
+ return cls(
+ sequences=[{"protein": {"id": "A", "sequence": sequence}}],
+ query_name=query_name,
+ )