Skip to content

Latest commit

 

History

History
executable file
·
3308 lines (3101 loc) · 98.9 KB

trex_book_basic.asciidoc

File metadata and controls

executable file
·
3308 lines (3101 loc) · 98.9 KB

Basic usage

DNS basic example

The following is a simple example helpful for understanding how TRex works. The example uses the TRex simulator. This simulator can be run on any Cisco Linux including on the TRex itself. TRex simulates clients and servers and generates traffic based on the pcap files provided.

Clients/Servers

trex model

The following is an example YAML-format traffic configuration file (cap2/dns_test.yaml), with explanatory notes.

$more cap2/dns_test.yaml
- duration : 10.0
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"     (1)
          clients_end   : "16.0.0.255"
          servers_start : "48.0.0.1"     (2)
          servers_end   : "48.0.0.255"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_info :
     - name: cap2/dns.pcap               (3)
       cps : 1.0                         (4)
       ipg : 10000                       (5)
       rtt : 10000                       (6)
       w   : 1
  1. Range of clients (IPv4 format).

  2. Range of servers (IPv4 format).

  3. pcap file, which includes the DNS cap file that will be used as a template.

  4. Number of connections per second to generate. In the example, 1.0 means 1 connection per secod.

  5. Inter-packet gap (microseconds). 10,000 = 10 msec.

  6. Should be the same as ipg.

DNS template file

dns wireshark

The DNS template file includes:

  1. One flow

  2. Two packets

  3. First packet: from the initiator (client → server)

  4. Second packet: response (server → client)

TRex replaces the client_ip, client_port, and server_ip. The server_port will be remain the same.

$./bp-sim-32-debug -f cap2/dns.yaml -o my.erf -v 3
 -- loading cap file cap2/dns.pcap
 id,name               , tps, cps,f-pkts,f-bytes, duration,   Mb/sec,   MB/sec,   #(1)
 00, cap2/dns.pcap     ,1.00,1.00,     2 ,     170 ,   0.02 ,   0.00 ,    0.00 ,
 00, sum               ,1.00,1.00,     2 ,     170 ,   0.00 ,   0.00 ,    0.00 ,

 Generating erf file ...
pkt_id,time,fid,pkt_info,pkt,len,type,is_init,is_last,type,thread_id,src_ip,dest_ip,src_port #(2)
 1 ,0.010000,1,0x9055598,1,77,0,1,0,0,0,10000001,30000001,1024
 2 ,0.020000,1,0x9054760,2,93,0,0,1,0,0,10000001,30000001,1024
 3 ,2.010000,2,0x9055598,1,77,0,1,0,0,0,10000002,30000002,1024
 4 ,2.020000,2,0x9054760,2,93,0,0,1,0,0,10000002,30000002,1024
 5 ,3.010000,3,0x9055598,1,77,0,1,0,0,0,10000003,30000003,1024
 6 ,3.020000,3,0x9054760,2,93,0,0,1,0,0,10000003,30000003,1024
 7 ,4.010000,4,0x9055598,1,77,0,1,0,0,0,10000004,30000004,1024
 8 ,4.020000,4,0x9054760,2,93,0,0,1,0,0,10000004,30000004,1024
 9 ,5.010000,5,0x9055598,1,77,0,1,0,0,0,10000005,30000005,1024
 10 ,5.020000,5,0x9054760,2,93,0,0,1,0,0,10000005,30000005,1024
 11 ,6.010000,6,0x9055598,1,77,0,1,0,0,0,10000006,30000006,1024
 12 ,6.020000,6,0x9054760,2,93,0,0,1,0,0,10000006,30000006,1024
 13 ,7.010000,7,0x9055598,1,77,0,1,0,0,0,10000007,30000007,1024
 14 ,7.020000,7,0x9054760,2,93,0,0,1,0,0,10000007,30000007,1024
 15 ,8.010000,8,0x9055598,1,77,0,1,0,0,0,10000008,30000008,1024
 16 ,8.020000,8,0x9054760,2,93,0,0,1,0,0,10000008,30000008,1024
 17 ,9.010000,9,0x9055598,1,77,0,1,0,0,0,10000009,30000009,1024
 18 ,9.020000,9,0x9054760,2,93,0,0,1,0,0,10000009,30000009,1024
 19 ,10.010000,a,0x9055598,1,77,0,1,0,0,0,1000000a,3000000a,1024
 20 ,10.020000,a,0x9054760,2,93,0,0,1,0,0,1000000a,3000000a,1024

file stats
=================
 m_total_bytes                           :       1.66 Kbytes
 m_total_pkt                             :      20.00  pkt
 m_total_open_flows                      :      10.00  flows
 m_total_pkt                             : 20
 m_total_open_flows                      : 10
 m_total_close_flows                     : 10
 m_total_bytes                           : 1700
  1. Global statistics on the templates given. cps=connection per second. tps is template per second. they might be different in case of plugins where one template includes more than one flow. For example RTP flow in SFR profile (avl/delay_10_rtp_160k_full.pcap)

  2. Generator output.

$wireshark  my.erf

gives

TRex generated output file

dns trex run

As the output file shows…​

  • TRex generates a new flow every 1 sec.

  • Client IP values are taken from client IP pool .

  • Servers IP values are taken from server IP pool .

  • IPG (iter packet gap) values are taken from the configuration file (10 msec).

Note

In basic usage, TRex does not wait for an initiator packet to be received. The response packet will be triggered based only on timeout (IPG in this example). In advanced scenarios (for example, NAT), The first packet of the flow can process by TRex software and initiate the response packet only when a packet is received. Consequently, it is necessary to process the template pcap file offline and ensure that there is enough round-trip delay (RTT) between client and server packets. One approach is to record the flow with a Pagent that creats RTT (10 msec RTT in the example), recording the traffic at some distance from both the client and server (not close to either side). This ensures sufficient delay that packets from each side will arrive without delay in the DUT. TRex-dev will work on an offline tool that will make it even simpler. Another approach is to change the yaml ipg field to a high enough value (bigger than 10msec ).

Converting the simulator text results in a table similar to the following:

Table 1. DNS example formatted results
pkt time sec fid flow-pkt-id client_ip client_port server_ip direction

1

0.010000

1

1

16.0.0.1

1024

48.0.0.1

2

0.020000

1

2

16.0.0.1

1024

48.0.0.1

3

2.010000

2

1

16.0.0.2

1024

48.0.0.2

4

2.020000

2

2

16.0.0.2

1024

48.0.0.2

5

3.010000

3

1

16.0.0.3

1024

48.0.0.3

6

3.020000

3

2

16.0.0.3

1024

48.0.0.3

7

4.010000

4

1

16.0.0.4

1024

48.0.0.4

8

4.020000

4

2

16.0.0.4

1024

48.0.0.4

9

5.010000

5

1

16.0.0.5

1024

48.0.0.5

10

5.020000

5

2

16.0.0.5

1024

48.0.0.5

11

6.010000

6

1

16.0.0.6

1024

48.0.0.6

12

6.020000

6

2

16.0.0.6

1024

48.0.0.6

13

7.010000

7

1

16.0.0.7

1024

48.0.0.7

14

7.020000

7

2

16.0.0.7

1024

48.0.0.7

15

8.010000

8

1

16.0.0.8

1024

48.0.0.8

16

8.020000

8

2

16.0.0.8

1024

48.0.0.8

17

9.010000

9

1

16.0.0.9

1024

48.0.0.9

18

9.020000

9

2

16.0.0.9

1024

48.0.0.9

19

10.010000

a

1

16.0.0.10

1024

48.0.0.10

20

10.020000

a

2

16.0.0.10

1024

48.0.0.10

where: fid:: Flow ID - different IDs for each flow.

low-pkt-id

Packet ID within the flow. Numbering begins with 1.

client_ip

Client IP address.

client_port

Client IP port.

server_ip

Server IP address.

direction

Direction. "→" is client-to-server; "←" is server-to-client.

The following enlarges the CPS and reduces the duration.

$more cap2/dns_test.yaml
- duration : 1.0                        (1)
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"
          clients_end   : "16.0.0.255"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.0.255"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_info :
     - name: cap2/dns.pcap
       cps : 10.0                        (2)
       ipg : 50000                       (3)
       rtt : 50000
       w   : 1
  1. Duration is 1 second.

  2. CPS is 10.0.

  3. IPG is 50 msec.

Running this produces the following output:

$./bp-sim-32-debug -f cap2/dns_test.yaml -o my.erf -v 3
Table 2. Formated results
pkt time sec template fid flow-pkt-id client_ip client_port server_ip desc

1

0.010000

0

1

1

16.0.0.1

1024

48.0.0.1

2

0.060000

0

1

2

16.0.0.1

1024

48.0.0.1

3

0.210000

0

2

1

16.0.0.2

1024

48.0.0.2

4

0.260000

0

2

2

16.0.0.2

1024

48.0.0.2

5

0.310000

0

3

1

16.0.0.3

1024

48.0.0.3

6

0.360000

0

3

2

16.0.0.3

1024

48.0.0.3

7

0.410000

0

4

1

16.0.0.4

1024

48.0.0.4

8

0.460000

0

4

2

16.0.0.4

1024

48.0.0.4

9

0.510000

0

5

1

16.0.0.5

1024

48.0.0.5

10

0.560000

0

5

2

16.0.0.5

1024

48.0.0.5

11

0.610000

0

6

1

16.0.0.6

1024

48.0.0.6

12

0.660000

0

6

2

16.0.0.6

1024

48.0.0.6

13

0.710000

0

7

1

16.0.0.7

1024

48.0.0.7

14

0.760000

0

7

2

16.0.0.7

1024

48.0.0.7

15

0.810000

0

8

1

16.0.0.8

1024

48.0.0.8

16

0.860000

0

8

2

16.0.0.8

1024

48.0.0.8

17

0.910000

0

9

1

16.0.0.9

1024

48.0.0.9

18

0.960000

0

9

2

16.0.0.9

1024

48.0.0.9

19

1.010000

0

a

1

16.0.0.10

1024

48.0.0.10

20

1.060000

0

a

2

16.0.0.10

1024

48.0.0.10

Use the following to display the output as a chart, with: x axis: time (seconds) y axis: flow ID The output indicates that there are 10 flows in 1 second, as expected, and the IPG is 50 msec

Note

Note the gap in the second flow generation. This is an expected schedular artifact and does not have an effect.

DNS, take flow IPG from pcap file

In the following example the IPG is taken from the IPG itself.

- duration : 1.0
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"
          clients_end   : "16.0.0.255"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.0.255"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 0
          udp_aging      : 0
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_ipg    : true        (1)
  #cap_ipg_min    : 30
  #cap_override_ipg    : 200
  cap_info :
     - name: cap2/dns.pcap
       cps : 10.0
       ipg : 10000
       rtt : 10000
       w   : 1
  1. IPG is taken from pcap.

Table 3. dns ipg from pcap file
pkt time sec template fid flow-pkt-id client_ip client_port server_ip desc

1

0.010000

0

1

1

16.0.0.1

1024

48.0.0.1

2

0.030944

0

1

2

16.0.0.1

1024

48.0.0.1

3

0.210000

0

2

1

16.0.0.2

1024

48.0.0.2

4

0.230944

0

2

2

16.0.0.2

1024

48.0.0.2

5

0.310000

0

3

1

16.0.0.3

1024

48.0.0.3

6

0.330944

0

3

2

16.0.0.3

1024

48.0.0.3

7

0.410000

0

4

1

16.0.0.4

1024

48.0.0.4

8

0.430944

0

4

2

16.0.0.4

1024

48.0.0.4

9

0.510000

0

5

1

16.0.0.5

1024

48.0.0.5

10

0.530944

0

5

2

16.0.0.5

1024

48.0.0.5

11

0.610000

0

6

1

16.0.0.6

1024

48.0.0.6

12

0.630944

0

6

2

16.0.0.6

1024

48.0.0.6

13

0.710000

0

7

1

16.0.0.7

1024

48.0.0.7

14

0.730944

0

7

2

16.0.0.7

1024

48.0.0.7

15

0.810000

0

8

1

16.0.0.8

1024

48.0.0.8

16

0.830944

0

8

2

16.0.0.8

1024

48.0.0.8

17

0.910000

0

9

1

16.0.0.9

1024

48.0.0.9

18

0.930944

0

9

2

16.0.0.9

1024

48.0.0.9

19

1.010000

0

a

1

16.0.0.10

1024

48.0.0.10

20

1.030944

0

a

2

16.0.0.10

1024

48.0.0.10

In this example, the IPG was taken from the pcap file, which is closer to 20 msec and not 50 msec (taken from the configuration file).

  #cap_ipg_min    : 30           (1)
  #cap_override_ipg    : 200     (2)
  1. Sets the minimum IPG (microseconds) which should be override : ( if (pkt_ipg<cap_ipg_min) { pkt_ipg = cap_override_ipg } )

  2. Value to override (microseconds).

DNS, Set one server ip

In this example the server IP is taken from the template.

- duration : 10.0
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"
          clients_end   : "16.0.1.255"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.0.255"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_ipg    : true
  #cap_ipg_min    : 30
  #cap_override_ipg    : 200
  cap_info :
     - name: cap2/dns.pcap
       cps : 1.0
       ipg : 10000
       rtt : 10000
       server_addr : "48.0.0.7"    (1)
       one_app_server : true       (2)
       w   : 1
  1. All templates will use the same server.

  2. Must be set to "true".

Table 4. dns ipg from pcap file
pkt time sec fid flow-pkt-id client_ip client_port server_ip desc

1

0.010000

1

1

16.0.0.1

1024

48.0.0.7

2

0.030944

1

2

16.0.0.1

1024

48.0.0.7

3

2.010000

2

1

16.0.0.2

1024

48.0.0.7

4

2.030944

2

2

16.0.0.2

1024

48.0.0.7

5

3.010000

3

1

16.0.0.3

1024

48.0.0.7

6

3.030944

3

2

16.0.0.3

1024

48.0.0.7

7

4.010000

4

1

16.0.0.4

1024

48.0.0.7

8

4.030944

4

2

16.0.0.4

1024

48.0.0.7

9

5.010000

5

1

16.0.0.5

1024

48.0.0.7

10

5.030944

5

2

16.0.0.5

1024

48.0.0.7

11

6.010000

6

1

16.0.0.6

1024

48.0.0.7

12

6.030944

6

2

16.0.0.6

1024

48.0.0.7

13

7.010000

7

1

16.0.0.7

1024

48.0.0.7

14

7.030944

7

2

16.0.0.7

1024

48.0.0.7

15

8.010000

8

1

16.0.0.8

1024

48.0.0.7

16

8.030944

8

2

16.0.0.8

1024

48.0.0.7

17

9.010000

9

1

16.0.0.9

1024

48.0.0.7

18

9.030944

9

2

16.0.0.9

1024

48.0.0.7

19

10.010000

a

1

16.0.0.10

1024

48.0.0.7

20

10.030944

a

2

16.0.0.10

1024

48.0.0.7

DNS, Reduce the number of clients

- duration : 10.0
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"    (1)
          clients_end   : "16.0.0.1"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.0.3"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_ipg    : true
  #cap_ipg_min    : 30
  #cap_override_ipg    : 200
  cap_info :
     - name: cap2/dns.pcap
       cps : 1.0
       ipg : 10000
       rtt : 10000
       w   : 1
  1. Only one client.

Table 5. dns ipg from pcap file
pkt time sec fid flow-pkt-id client_ip client_port server_ip desc

1

0.010000

1

1

16.0.0.1

1024

48.0.0.1

2

0.030944

1

2

16.0.0.1

1024

48.0.0.1

3

2.010000

2

1

16.0.0.1

1025

48.0.0.2

4

2.030944

2

2

16.0.0.1

1025

48.0.0.2

5

3.010000

3

1

16.0.0.1

1026

48.0.0.3

6

3.030944

3

2

16.0.0.1

1026

48.0.0.3

7

4.010000

4

1

16.0.0.1

1027

48.0.0.4

8

4.030944

4

2

16.0.0.1

1027

48.0.0.4

9

5.010000

5

1

16.0.0.1

1028

48.0.0.5

10

5.030944

5

2

16.0.0.1

1028

48.0.0.5

11

6.010000

6

1

16.0.0.1

1029

48.0.0.6

12

6.030944

6

2

16.0.0.1

1029

48.0.0.6

13

7.010000

7

1

16.0.0.1

1030

48.0.0.7

14

7.030944

7

2

16.0.0.1

1030

48.0.0.7

15

8.010000

8

1

16.0.0.1

1031

48.0.0.8

16

8.030944

8

2

16.0.0.1

1031

48.0.0.8

17

9.010000

9

1

16.0.0.1

1032

48.0.0.9

18

9.030944

9

2

16.0.0.1

1032

48.0.0.9

19

10.010000

a

1

16.0.0.1

1033

48.0.0.10

20

10.030944

a

2

16.0.0.1

1033

48.0.0.10

In this case there is only one client so only ports are used to distinc the flows you need to be sure that you have enogth free sockets when running TRex in high rates

 Active-flows    :        0  Clients :      1  <1>  Socket-util : 0.0000 %    (2)
 Open-flows      :        1  Servers :      254   Socket :        1 Socket/Clients :  0.0
 drop-rate       :       0.00  bps
  1. Number of clients

  2. sockets utilization (should be lowwer than 20%, elarge the number of clients in case of an issue).

DNS, W=1

w is a tunable to the IP clients/servers generator. w=1 is the default behavior. Setting w=2 configures a burst of two allocations from the same client. See the following example.

- duration : 10.0
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"
          clients_end   : "16.0.0.10"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.0.3"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_ipg    : true
  #cap_ipg_min    : 30
  #cap_override_ipg    : 200
  cap_info :
     - name: cap2/dns.pcap
       cps : 1.0
       ipg : 10000
       rtt : 10000
       w   : 2                (1)
  1. Two clients will be allocated from the same template.

Table 6. DNS ipg from pcap file
pkt time sec fid flow-pkt-id client_ip client_port server_ip desc

1

0.010000

1

1

16.0.0.1

1024

48.0.0.1

2

0.030944

1

2

16.0.0.1

1024

48.0.0.1

3

2.010000

2

1

16.0.0.1

1025

48.0.0.1

4

2.030944

2

2

16.0.0.1

1025

48.0.0.1

5

3.010000

3

1

16.0.0.2

1024

48.0.0.2

6

3.030944

3

2

16.0.0.2

1024

48.0.0.2

7

4.010000

4

1

16.0.0.2

1025

48.0.0.2

8

4.030944

4

2

16.0.0.2

1025

48.0.0.2

9

5.010000

5

1

16.0.0.3

1024

48.0.0.3

10

5.030944

5

2

16.0.0.3

1024

48.0.0.3

11

6.010000

6

1

16.0.0.3

1025

48.0.0.3

12

6.030944

6

2

16.0.0.3

1025

48.0.0.3

13

7.010000

7

1

16.0.0.4

1024

48.0.0.4

14

7.030944

7

2

16.0.0.4

1024

48.0.0.4

15

8.010000

8

1

16.0.0.4

1025

48.0.0.4

16

8.030944

8

2

16.0.0.4

1025

48.0.0.4

17

9.010000

9

1

16.0.0.5

1024

48.0.0.5

18

9.030944

9

2

16.0.0.5

1024

48.0.0.5

19

10.010000

a

1

16.0.0.5

1025

48.0.0.5

20

10.030944

a

2

16.0.0.5

1025

48.0.0.5

Mixing HTTP and DNS template

The following example combines elements of HTTP and DNS templates:

- duration : 1.0
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"
          clients_end   : "16.0.0.10"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.0.3"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00]
  cap_ipg    : true
  cap_info :
     - name: cap2/dns.pcap
       cps : 10.0                        (1)
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_http_browsing_0.pcap
       cps : 2.0                         (1)
       ipg : 10000
       rtt : 10000
       w   : 1
  1. Same CPS for both templates.

This creates the following output:

Table 7. DNS ipg from pcap file
pkt time sec template fid flow-pkt-id client_ip client_port server_ip desc

1

0.010000

0

1

1

16.0.0.1

1024

48.0.0.1

2

0.030944

0

1

2

16.0.0.1

1024

48.0.0.1

3

0.093333

1

2

1

16.0.0.2

1024

48.0.0.2

4

0.104362

1

2

2

16.0.0.2

1024

48.0.0.2

5

0.115385

1

2

3

16.0.0.2

1024

48.0.0.2

6

0.115394

1

2

4

16.0.0.2

1024

48.0.0.2

7

0.126471

1

2

5

16.0.0.2

1024

48.0.0.2

8

0.126484

1

2

6

16.0.0.2

1024

48.0.0.2

9

0.137530

1

2

7

16.0.0.2

1024

48.0.0.2

10

0.148609

1

2

8

16.0.0.2

1024

48.0.0.2

11

0.148621

1

2

9

16.0.0.2

1024

48.0.0.2

12

0.148635

1

2

10

16.0.0.2

1024

48.0.0.2

13

0.159663

1

2

11

16.0.0.2

1024

48.0.0.2

14

0.170750

1

2

12

16.0.0.2

1024

48.0.0.2

15

0.170762

1

2

13

16.0.0.2

1024

48.0.0.2

16

0.170774

1

2

14

16.0.0.2

1024

48.0.0.2

17

0.176667

0

3

1

16.0.0.3

1024

48.0.0.3

18

0.181805

1

2

15

16.0.0.2

1024

48.0.0.2

19

0.181815

1

2

16

16.0.0.2

1024

48.0.0.2

20

0.192889

1

2

17

16.0.0.2

1024

48.0.0.2

21

0.192902

1

2

18

16.0.0.2

1024

48.0.0.2

Template_id

0: DNS template 1: HTTP template

The output above illustrates two HTTP flows and ten DNS flows in 1 second, as expected.

SFR traffic YAML

SFR traffic includes a combination of traffic templates. This traffic mix in the example below was defined by SFR France. This SFR traffic profile is used as our traffic profile for our ASR1k/ISR-G2 benchmark. It is also possible to use EMIX instead of IMIX traffic.

The traffic was recorded from a Spirent C100 with a Pagent that introduce 10msec delay from client and server side.

- duration : 0.1
  generator :
          distribution : "seq"
          clients_start : "16.0.0.1"
          clients_end   : "16.0.1.255"
          servers_start : "48.0.0.1"
          servers_end   : "48.0.20.255"
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0"
          tcp_aging      : 0
          udp_aging      : 0
  mac        : [0x0,0x0,0x0,0x1,0x0,0x00]
  cap_ipg    : true
  cap_info :
     - name: avl/delay_10_http_get_0.pcap
       cps : 404.52
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_http_post_0.pcap
       cps : 404.52
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_https_0.pcap
       cps : 130.8745
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_http_browsing_0.pcap
       cps : 709.89
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_exchange_0.pcap
       cps : 253.81
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_mail_pop_0.pcap
       cps : 4.759
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_mail_pop_1.pcap
       cps : 4.759
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_mail_pop_2.pcap
       cps : 4.759
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_oracle_0.pcap
       cps : 79.3178
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_rtp_160k_full.pcap
       cps : 2.776
       ipg : 10000
       rtt : 10000
       w   : 1
       one_app_server : false
       plugin_id : 1           (2)
     - name: avl/delay_10_rtp_250k_full.pcap
       cps : 1.982
       ipg : 10000
       rtt : 10000
       w   : 1
       one_app_server : false
       plugin_id : 1
     - name: avl/delay_10_smtp_0.pcap
       cps : 7.3369
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_smtp_1.pcap
       cps : 7.3369
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_smtp_2.pcap
       cps : 7.3369
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_video_call_0.pcap
       cps : 11.8976
       ipg : 10000
       rtt : 10000
       w   : 1
       one_app_server : false
     - name: avl/delay_10_sip_video_call_full.pcap
       cps : 29.347
       ipg : 10000
       rtt : 10000
       w   : 1
       plugin_id : 2   (1)
       one_app_server : false
     - name: avl/delay_10_citrix_0.pcap
       cps : 43.6248
       ipg : 10000
       rtt : 10000
       w   : 1
     - name: avl/delay_10_dns_0.pcap
       cps : 1975.015
       ipg : 10000
       rtt : 10000
       w   : 1
       wlength    : 1
  1. Plugin for SIP protocol, used to replace the IP/port in the control flow base on the data-flow.

  2. Plugin for RTSP protocol used to replace the IP/port in the control flow base on the data-flow.

TRex command line

TRex commands typically include the following main arguments, but only -f and -d are required.

$.sudo /t-rex-64 -f [traffic_yaml] -m [muti]  -d [duration]  -l [Hz=1000]  -c [cores]
-f=TRAFIC_YAML_FILE

YAML traffic configuration file.

-m=MUL

Factor for bandwidth (multiplies the CPS of each template by this value).

-d=DURATION

Duration of the test (sec). Default: 0

-l=HZ

Rate (Hz) for running the latency daemon. Example: -l 1000 runs 1000 pkt/sec from each interface. A value of zero (0) disables the latency check.

-c=CORES

Number of cores. Use 4 for TRex 40Gb/sec. Monitor the CPU% of TRex - it should be ~50%.

The full reference can be found here

TRex command line examples

Simple HTTP 1Gb/sec for 100 sec
$.sudo /t-rex-64 -f cap2/simple_http.yaml -c 4 -m 100 -d 100
Simple HTTP 1Gb/sec with latency for 100 sec
$.sudo /t-rex-64 -f cap2/simple_http.yaml -c 4 -m 100 -d 100 -l 1000
SFR 35Gb/sec traffic
$.sudo /t-rex-64 -f avl/sfr_delay_10_1g.yaml -c 4 -m 35 -d 100 -p
SFR 20Gb/sec traffic with latency
$.sudo /t-rex-64 -f avl/sfr_delay_10_1g.yaml -c 4 -m 20 -d 100 -l 1000
SFR ipv6 20Gb/sec traffic with latency
$.sudo /t-rex-64 -f avl/sfr_delay_10_1g_no_bundeling.yaml -c 4 -m 20 -d 100 -l 1000 --ipv6
Simple HTTP 1Gb/sec with NAT translation support
$.sudo /t-rex-64 -f cap2/simple_http.yaml -c 4 -m 100 -d 100 -l 1000 --learn
IMIX 1G/sec ,1600 flows
$.sudo /t-rex-64 -f cap2/imix_fast_1g.yaml -c 4 -m 1 -d 100 -l 1000
IMIX 1Gb/sec,100K flows
$.sudo /t-rex-64 -f cap2/imix_fast_1g_100k.yaml -c 4 -m 1 -d 100 -l 1000
64bytes ~1Gb/sec,1600 flows
$.sudo /t-rex-64 -f cap2/imix_64.yaml -c 4 -m 1 -d 100 -l 1000

Traffic profiles provided with the TRex package

name description

cap2/dns.yaml

simple dns pcap file

cap2/http_simple.yaml

simple http cap file

avl/sfr_delay_10_1g_no_bundeling.yaml

sfr traffic profile capture from Avalanche - Spirent without bundeling support with RTT=10msec ( a delay machine), this can be used with --ipv6 and --learn mode

avl/sfr_delay_10_1g.yaml

head-end sfr traffic profile capture from Avalanche - Spirent with bundeling support with RTT=10msec ( a delay machine), it is normalized to 1Gb/sec for m=1

avl/sfr_branch_profile_delay_10.yaml

branch sfr profile capture from Avalanche - Spirent with bundeling support with RTT=10msec it, is normalized to 1Gb/sec for m=1

cap2/imix_fast_1g.yaml

imix profile with 1600 flows normalized to 1Gb/sec.

cap2/imix_fast_1g_100k_flows.yaml

imix profile with 100k flows normalized to 1Gb/sec.

cap2/imix_64.yaml

64byte UDP packets profile

pkt,time sec,template,fid,flow-pkt-id,client_ip,client_port,server_ip ,desc 1 , 0.010000 , 0 , 1 , 1 , 16.0.0.1 , 1024 , 48.0.0.1 , → 2 , 0.210000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 3 , 0.310000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 4 , 0.310000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 5 , 0.510000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 6 , 0.610000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 7 , 0.610000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 8 , 0.810000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 9 , 0.910000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 10 , 0.910000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 11 , 1.110000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 12 , 1.210000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 13 , 1.210000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 14 , 1.410000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 15 , 1.510000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 16 , 1.510000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 17 , 1.710000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 18 , 1.810000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 19 , 1.810000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 20 , 2.010000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 21 , 2.110000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 22 , 2.110000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 23 , 2.310000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 24 , 2.410000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 25 , 2.410000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 26 , 2.610000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 27 , 2.710000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 28 , 2.710000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 29 , 2.910000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 30 , 3.010000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 31 , 3.010000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , →

* Average CPS: 10 packets per second (30 packets in 3 sec). * Total of 3 flows, as specified in the configuration file. * The flows come in bursts, as specified in the configuration file.

=== Clients/Servers IP allocation scheme

Currently, there is one global IP pool for clients and servers. It serves all templates. all the templates will allocate IP from this global pool. Each TRex client/server "dual-port" (pair of ports, such as port 0 for client, port 1 for server) has it own mask offset taken from the YAML. The mask offset is called dual_port_mask.

Example:

[source,python] ---- generator : distribution : "seq" clients_start : "16.0.0.1" clients_end : "16.0.0.255" servers_start : "48.0.0.1" servers_end : "48.0.0.255" dual_port_mask : "1.0.0.0" <1> tcp_aging : 0 udp_aging : 0 ---- <1> Mask to add per dual-port pair. The reason we introduce dual_port_mask is to make static route configurable. With this mask, different ports has different prefix.

With four ports, TRex produces the following output:

[source,python] ---- dual-0 (0,1) -→ C (16.0.0.1-16.0.0.128 ) <→ S( 48.0.0.1 - 48.0.0.128) dual-1 (2,3) -→ C (17.0.0.129-17.0.0.255 ) <→ S( 49.0.0.129 - 49.0.0.255) + mask ("1.0.0.0") ----

In the case of setting dual-port_mask as 0.0.0.0, both ports will use the same range of ip. With four ports and dual_port_mask as 0.0.0.0, the ip range is :

[source,python] ---- dual-0 (0,1) -→ C (16.0.0.1-16.0.0.128 ) <→ S( 48.0.0.1 - 48.0.0.128) dual-1 (2,3) -→ C (16.0.0.129-16.0.0.255 ) <→ S( 48.0.0.129 - 48.0.0.255) ----

- Number of clients : 255 - Number of servers : 255 - The mask defined by dual_port_mask (1.0.0.0) is added for each dual-port pair, but the total number of clients/servers from YAML will be constant and does not depend on the amount of dual ports. - TCP/UDP aging is required when the number of clients is very small and the template defines a very long duration. This is the time it takes to return the socket to the pool. - In the current version, the only option for distribution is "seq".

Router configuration for this mode:::

PBR is not necessary. The following configuration is sufficient.

[source,python] ---- interface TenGigabitEthernet1/0/0 <1> mac-address 0000.0001.0000 mtu 4000 ip address 11.11.11.11 255.255.255.0 ! ` interface TenGigabitEthernet1/1/0 <2> mac-address 0000.0001.0000 mtu 4000 ip address 22.11.11.11 255.255.255.0 ! interface TenGigabitEthernet1/2/0 <3> mac-address 0000.0001.0000 mtu 4000 ip address 33.11.11.11 255.255.255.0 ! interface TenGigabitEthernet1/3/0 <4> mac-address 0000.0001.0000 mtu 4000 ip address 44.11.11.11 255.255.255.0 load-interval 30

ip route 16.0.0.0 255.0.0.0 22.11.11.12 ip route 48.0.0.0 255.0.0.0 11.11.11.12 ip route 17.0.0.0 255.0.0.0 44.11.11.12 ip route 49.0.0.0 255.0.0.0 33.11.11.12 ---- <1> Connected to TRex port 0 (client side) <2> Connected to TRex port 1 (server side) <3> Connected to TRex port 2 (client side) <4> Connected to TRex port 3(server side)

One server:::

To support a template with one server, you can add a new YAML server_addr ip. Each dual-port pair will be assigned a separate server (in compliance with the mask).

[source,python] ---- - name: cap2/dns.pcap cps : 1.0 ipg : 10000 rtt : 10000 w : 1 server_addr : "48.0.0.1" <1> one_app_server : true <2> wlength : 1 ---- <1> Server IPv4 address. <2> Enable one server mode.

w/wlength:::

not require to configure them, user 1

new statistic:::

[source,python] ---- Active-flows : 19509 Clients : 504 Socket-util : 0.0670 % Open-flows : 247395 Servers : 65408 Socket : 21277 Socket/Clients : 42.2 ----

[NOTE] ===================================================================== * No backward compatibility with the old generator YAML format. * When using -p option, TRex will not comply with the static route rules. Server-side traffic may be sent from the client side (port 0) and vice-versa. Use the -p option only with PBR configuration when the router, switch p1<→p2. * VLAN (sub interface feature) does not comply with static route rules. Use it only with PBR. VLAN0 <→ VALN1 per interface vlan : { enable : 1 , vlan0 : 100 , vlan1 : 200 } * Limitation: When using a template with plugins (bundles), the number of servers must be higher than the number of clients. =====================================================================

==== More Details about IP allocations

Each time a new flow is creaed, TRex allocates a new Client IP/port and Server IP. This 3-tuple should be distinct among active flows.

Currently, only sequcency distribution is supported in IP allocation. That means the IP address is increased one by one.

Let’s say if we have 2 candidate IPs in the pool: 16.0.0.1 and 16.0.0.2. So the sequence of allocated clients should be something like this:

[source,python] ---- 16.0.0.0.1 [1024] 16.0.0.0.2 [1024] 16.0.0.0.1 [1025] 16.0.0.0.2 [1025] ----

==== How to decide the PPS and BPS

- Example of one flow with 4 packets - Green are first packet of flow - Lets say the client ip pool starts from 16.0.0.1, and the distribution is seq.

ip allocation

\(Total PPS = \sum_{k=0}^{n}(CPS_{k}\times {flow\_pkts}_{k})\)

\(Concurrent flow = \sum_{k=0}^{n}CPS_{k}\times flow\_duration_k \)

The above fomulars can be used to calculate the PPS. The TRex throughput depends on the PPS calculated above and the value of m (a multiplier assigned by TRex cli).

The m value is a multiplier of total pcap files CPS. CPS of pcap file is configured on yaml file.

Let’s take a simple example as below.

[source,python] ---- cap_info : - name: avl/first.pcap < — has 2 packets cps : 102.0 ipg : 10000 rtt : 10000 w : 1 - name: avl/second.pcap < — has 20 packets cps : 50.0 ipg : 10000 rtt : 10000 w : 1 ----

The throughput is: 'm*(CPS_1*flow_pkts+CPS_2*flow_pkts)'

So if the m is set as 1, the total PPS is : 102*2+50*20 = 1204 PPS.

The BPS depends on the packet size. You can refer to your packet size and get the BPS = PPS*Packet_size.

==== Client/Server IP allocation

We have several features under development for IP allocation.

- 1) per-template generator

Multiple generators can be defined and assigned to different pcap file templates.

The YAML configuration is something like this:

[source,python] ---- generator : distribution : "seq" clients_start : "16.0.0.1" clients_end : "16.0.1.255" servers_start : "48.0.0.1" servers_end : "48.0.20.255" clients_per_gb : 201 min_clients : 101 dual_port_mask : "1.0.0.0" tcp_aging : 0 udp_aging : 0 generator_clients : - name : "c1" distribution : "random" ip_start : "38.0.0.1" ip_end : "38.0.1.255" clients_per_gb : 201 min_clients : 101 dual_port_mask : "1.0.0.0" tcp_aging : 0 udp_aging : 0 generator_servers : - name : "s1" distribution : "seq" ip_start : "58.0.0.1" ip_end : "58.0.1.255" dual_port_mask : "1.0.0.0 cap_info : - name: avl/delay_10_http_get_0.pcap cps : 404.52 ipg : 10000 rtt : 10000 w : 1 - name: avl/delay_10_http_post_0.pcap client_pool : "c1" server_pool : "s1" cps : 404.52 ipg : 10000 rtt : 10000 w : 1 ----

- 2) More distributions will be supported (normal distribution, random distribution, etc)

Currently, only sequcence and random are supported.

- 3) Histogram of tuple pool will be supported

This feature gives user more flexibility to define the IP generator.

[source,python] ---- generator : client_pools: - name : "a" distribution : "seq" clients_start : "16.0.0.1" clients_end : "16.0.1.255" tcp_aging : 0 udp_aging : 0

- name : "b" distribution : "random" clients_start : 26.0.0.1" clients_end : 26.0.1.255" tcp_aging : 0 udp_aging : 0

- name : "c" pools_list : - name:"a" probability: 0.8 - name:"b" probability: 0.2 ----

=== Measure Jitter/Latency

To measure jitter/latency on high priorty packets (one SCTP flow), use -l [Hz] where Hz defines the number of packets to send from each port per second. This option measures latency and jitter in the latency. The shell output is similar to the following:

[source,python] ---- Cpu Utilization : 0.1 % if

tx_ok , rx_ok , rx ,error, average , max , Jitter<1> ,max

, , check, , latency(usec),latency (usec) ,(usec) , window -------------------------------------------------------------------------------------- 0

1002, 1002, 2501, 0, 61 , 70, 3

60 60 1

1002, 1002, 2012, 0, 56 , 63, 2

50 51 2

1002, 1002, 2322, 0, 66 , 74, 5

68 59 3

1002, 1002, 1727, 0, 58 , 68, 2

52 49

Rx Check stats enabled --------------------------------------------------------------------------------------- rx check: avg/max/jitter latency, 94 , 744, 49<1>

252 287 3

active flows: 10, fif: 308, drop: 0, errors: 0 --------------------------------------------------------------------------------------- ---- <1> Jitter information