The following is a simple example helpful for understanding how TRex works. The example uses the TRex simulator. This simulator can be run on any Cisco Linux including on the TRex itself. TRex simulates clients and servers and generates traffic based on the pcap files provided.
The following is an example YAML-format traffic configuration file (cap2/dns_test.yaml), with explanatory notes.
$more cap2/dns_test.yaml
- duration : 10.0
generator :
distribution : "seq"
clients_start : "16.0.0.1" (1)
clients_end : "16.0.0.255"
servers_start : "48.0.0.1" (2)
servers_end : "48.0.0.255"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 1
udp_aging : 1
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_info :
- name: cap2/dns.pcap (3)
cps : 1.0 (4)
ipg : 10000 (5)
rtt : 10000 (6)
w : 1
-
Range of clients (IPv4 format).
-
Range of servers (IPv4 format).
-
pcap file, which includes the DNS cap file that will be used as a template.
-
Number of connections per second to generate. In the example, 1.0 means 1 connection per secod.
-
Inter-packet gap (microseconds). 10,000 = 10 msec.
-
Should be the same as ipg.
The DNS template file includes:
-
One flow
-
Two packets
-
First packet: from the initiator (client → server)
-
Second packet: response (server → client)
TRex replaces the client_ip, client_port, and server_ip. The server_port will be remain the same.
$./bp-sim-32-debug -f cap2/dns.yaml -o my.erf -v 3
-- loading cap file cap2/dns.pcap
id,name , tps, cps,f-pkts,f-bytes, duration, Mb/sec, MB/sec, #(1)
00, cap2/dns.pcap ,1.00,1.00, 2 , 170 , 0.02 , 0.00 , 0.00 ,
00, sum ,1.00,1.00, 2 , 170 , 0.00 , 0.00 , 0.00 ,
Generating erf file ...
pkt_id,time,fid,pkt_info,pkt,len,type,is_init,is_last,type,thread_id,src_ip,dest_ip,src_port #(2)
1 ,0.010000,1,0x9055598,1,77,0,1,0,0,0,10000001,30000001,1024
2 ,0.020000,1,0x9054760,2,93,0,0,1,0,0,10000001,30000001,1024
3 ,2.010000,2,0x9055598,1,77,0,1,0,0,0,10000002,30000002,1024
4 ,2.020000,2,0x9054760,2,93,0,0,1,0,0,10000002,30000002,1024
5 ,3.010000,3,0x9055598,1,77,0,1,0,0,0,10000003,30000003,1024
6 ,3.020000,3,0x9054760,2,93,0,0,1,0,0,10000003,30000003,1024
7 ,4.010000,4,0x9055598,1,77,0,1,0,0,0,10000004,30000004,1024
8 ,4.020000,4,0x9054760,2,93,0,0,1,0,0,10000004,30000004,1024
9 ,5.010000,5,0x9055598,1,77,0,1,0,0,0,10000005,30000005,1024
10 ,5.020000,5,0x9054760,2,93,0,0,1,0,0,10000005,30000005,1024
11 ,6.010000,6,0x9055598,1,77,0,1,0,0,0,10000006,30000006,1024
12 ,6.020000,6,0x9054760,2,93,0,0,1,0,0,10000006,30000006,1024
13 ,7.010000,7,0x9055598,1,77,0,1,0,0,0,10000007,30000007,1024
14 ,7.020000,7,0x9054760,2,93,0,0,1,0,0,10000007,30000007,1024
15 ,8.010000,8,0x9055598,1,77,0,1,0,0,0,10000008,30000008,1024
16 ,8.020000,8,0x9054760,2,93,0,0,1,0,0,10000008,30000008,1024
17 ,9.010000,9,0x9055598,1,77,0,1,0,0,0,10000009,30000009,1024
18 ,9.020000,9,0x9054760,2,93,0,0,1,0,0,10000009,30000009,1024
19 ,10.010000,a,0x9055598,1,77,0,1,0,0,0,1000000a,3000000a,1024
20 ,10.020000,a,0x9054760,2,93,0,0,1,0,0,1000000a,3000000a,1024
file stats
=================
m_total_bytes : 1.66 Kbytes
m_total_pkt : 20.00 pkt
m_total_open_flows : 10.00 flows
m_total_pkt : 20
m_total_open_flows : 10
m_total_close_flows : 10
m_total_bytes : 1700
-
Global statistics on the templates given. cps=connection per second. tps is template per second. they might be different in case of plugins where one template includes more than one flow. For example RTP flow in SFR profile (avl/delay_10_rtp_160k_full.pcap)
-
Generator output.
$wireshark my.erf
gives
As the output file shows…
-
TRex generates a new flow every 1 sec.
-
Client IP values are taken from client IP pool .
-
Servers IP values are taken from server IP pool .
-
IPG (iter packet gap) values are taken from the configuration file (10 msec).
Note
|
In basic usage, TRex does not wait for an initiator packet to be received. The response packet will be triggered based only on timeout (IPG in this example).
In advanced scenarios (for example, NAT), The first packet of the flow can process by TRex software and initiate the response packet only when a packet is received.
Consequently, it is necessary to process the template pcap file offline and ensure that there is enough round-trip delay (RTT) between client and server packets.
One approach is to record the flow with a Pagent that creats RTT (10 msec RTT in the example), recording the traffic at some distance from both the client and server (not close to either side).
This ensures sufficient delay that packets from each side will arrive without delay in the DUT. TRex-dev will work on an offline tool that will make it even simpler.
Another approach is to change the |
Converting the simulator text results in a table similar to the following:
pkt | time sec | fid | flow-pkt-id | client_ip | client_port | server_ip | direction |
---|---|---|---|---|---|---|---|
1 |
0.010000 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.1 |
→ |
2 |
0.020000 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.1 |
← |
3 |
2.010000 |
2 |
1 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
4 |
2.020000 |
2 |
2 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
5 |
3.010000 |
3 |
1 |
16.0.0.3 |
1024 |
48.0.0.3 |
→ |
6 |
3.020000 |
3 |
2 |
16.0.0.3 |
1024 |
48.0.0.3 |
← |
7 |
4.010000 |
4 |
1 |
16.0.0.4 |
1024 |
48.0.0.4 |
→ |
8 |
4.020000 |
4 |
2 |
16.0.0.4 |
1024 |
48.0.0.4 |
← |
9 |
5.010000 |
5 |
1 |
16.0.0.5 |
1024 |
48.0.0.5 |
→ |
10 |
5.020000 |
5 |
2 |
16.0.0.5 |
1024 |
48.0.0.5 |
← |
11 |
6.010000 |
6 |
1 |
16.0.0.6 |
1024 |
48.0.0.6 |
→ |
12 |
6.020000 |
6 |
2 |
16.0.0.6 |
1024 |
48.0.0.6 |
← |
13 |
7.010000 |
7 |
1 |
16.0.0.7 |
1024 |
48.0.0.7 |
→ |
14 |
7.020000 |
7 |
2 |
16.0.0.7 |
1024 |
48.0.0.7 |
← |
15 |
8.010000 |
8 |
1 |
16.0.0.8 |
1024 |
48.0.0.8 |
→ |
16 |
8.020000 |
8 |
2 |
16.0.0.8 |
1024 |
48.0.0.8 |
← |
17 |
9.010000 |
9 |
1 |
16.0.0.9 |
1024 |
48.0.0.9 |
→ |
18 |
9.020000 |
9 |
2 |
16.0.0.9 |
1024 |
48.0.0.9 |
← |
19 |
10.010000 |
a |
1 |
16.0.0.10 |
1024 |
48.0.0.10 |
→ |
20 |
10.020000 |
a |
2 |
16.0.0.10 |
1024 |
48.0.0.10 |
← |
where: fid:: Flow ID - different IDs for each flow.
- low-pkt-id
-
Packet ID within the flow. Numbering begins with 1.
- client_ip
-
Client IP address.
- client_port
-
Client IP port.
- server_ip
-
Server IP address.
- direction
-
Direction. "→" is client-to-server; "←" is server-to-client.
The following enlarges the CPS and reduces the duration.
$more cap2/dns_test.yaml
- duration : 1.0 (1)
generator :
distribution : "seq"
clients_start : "16.0.0.1"
clients_end : "16.0.0.255"
servers_start : "48.0.0.1"
servers_end : "48.0.0.255"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 1
udp_aging : 1
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_info :
- name: cap2/dns.pcap
cps : 10.0 (2)
ipg : 50000 (3)
rtt : 50000
w : 1
-
Duration is 1 second.
-
CPS is 10.0.
-
IPG is 50 msec.
Running this produces the following output:
$./bp-sim-32-debug -f cap2/dns_test.yaml -o my.erf -v 3
pkt | time sec | template | fid | flow-pkt-id | client_ip | client_port | server_ip | desc |
---|---|---|---|---|---|---|---|---|
1 |
0.010000 |
0 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.1 |
→ |
2 |
0.060000 |
0 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.1 |
← |
3 |
0.210000 |
0 |
2 |
1 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
4 |
0.260000 |
0 |
2 |
2 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
5 |
0.310000 |
0 |
3 |
1 |
16.0.0.3 |
1024 |
48.0.0.3 |
→ |
6 |
0.360000 |
0 |
3 |
2 |
16.0.0.3 |
1024 |
48.0.0.3 |
← |
7 |
0.410000 |
0 |
4 |
1 |
16.0.0.4 |
1024 |
48.0.0.4 |
→ |
8 |
0.460000 |
0 |
4 |
2 |
16.0.0.4 |
1024 |
48.0.0.4 |
← |
9 |
0.510000 |
0 |
5 |
1 |
16.0.0.5 |
1024 |
48.0.0.5 |
→ |
10 |
0.560000 |
0 |
5 |
2 |
16.0.0.5 |
1024 |
48.0.0.5 |
← |
11 |
0.610000 |
0 |
6 |
1 |
16.0.0.6 |
1024 |
48.0.0.6 |
→ |
12 |
0.660000 |
0 |
6 |
2 |
16.0.0.6 |
1024 |
48.0.0.6 |
← |
13 |
0.710000 |
0 |
7 |
1 |
16.0.0.7 |
1024 |
48.0.0.7 |
→ |
14 |
0.760000 |
0 |
7 |
2 |
16.0.0.7 |
1024 |
48.0.0.7 |
← |
15 |
0.810000 |
0 |
8 |
1 |
16.0.0.8 |
1024 |
48.0.0.8 |
→ |
16 |
0.860000 |
0 |
8 |
2 |
16.0.0.8 |
1024 |
48.0.0.8 |
← |
17 |
0.910000 |
0 |
9 |
1 |
16.0.0.9 |
1024 |
48.0.0.9 |
→ |
18 |
0.960000 |
0 |
9 |
2 |
16.0.0.9 |
1024 |
48.0.0.9 |
← |
19 |
1.010000 |
0 |
a |
1 |
16.0.0.10 |
1024 |
48.0.0.10 |
→ |
20 |
1.060000 |
0 |
a |
2 |
16.0.0.10 |
1024 |
48.0.0.10 |
← |
Use the following to display the output as a chart, with:
x axis: time (seconds)
y axis: flow ID
The output indicates that there are 10 flows in 1 second, as expected, and the IPG is 50 msec
Note
|
Note the gap in the second flow generation. This is an expected schedular artifact and does not have an effect. |
In the following example the IPG is taken from the IPG itself.
- duration : 1.0
generator :
distribution : "seq"
clients_start : "16.0.0.1"
clients_end : "16.0.0.255"
servers_start : "48.0.0.1"
servers_end : "48.0.0.255"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 0
udp_aging : 0
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_ipg : true (1)
#cap_ipg_min : 30
#cap_override_ipg : 200
cap_info :
- name: cap2/dns.pcap
cps : 10.0
ipg : 10000
rtt : 10000
w : 1
-
IPG is taken from pcap.
pkt | time sec | template | fid | flow-pkt-id | client_ip | client_port | server_ip | desc |
---|---|---|---|---|---|---|---|---|
1 |
0.010000 |
0 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.1 |
→ |
2 |
0.030944 |
0 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.1 |
← |
3 |
0.210000 |
0 |
2 |
1 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
4 |
0.230944 |
0 |
2 |
2 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
5 |
0.310000 |
0 |
3 |
1 |
16.0.0.3 |
1024 |
48.0.0.3 |
→ |
6 |
0.330944 |
0 |
3 |
2 |
16.0.0.3 |
1024 |
48.0.0.3 |
← |
7 |
0.410000 |
0 |
4 |
1 |
16.0.0.4 |
1024 |
48.0.0.4 |
→ |
8 |
0.430944 |
0 |
4 |
2 |
16.0.0.4 |
1024 |
48.0.0.4 |
← |
9 |
0.510000 |
0 |
5 |
1 |
16.0.0.5 |
1024 |
48.0.0.5 |
→ |
10 |
0.530944 |
0 |
5 |
2 |
16.0.0.5 |
1024 |
48.0.0.5 |
← |
11 |
0.610000 |
0 |
6 |
1 |
16.0.0.6 |
1024 |
48.0.0.6 |
→ |
12 |
0.630944 |
0 |
6 |
2 |
16.0.0.6 |
1024 |
48.0.0.6 |
← |
13 |
0.710000 |
0 |
7 |
1 |
16.0.0.7 |
1024 |
48.0.0.7 |
→ |
14 |
0.730944 |
0 |
7 |
2 |
16.0.0.7 |
1024 |
48.0.0.7 |
← |
15 |
0.810000 |
0 |
8 |
1 |
16.0.0.8 |
1024 |
48.0.0.8 |
→ |
16 |
0.830944 |
0 |
8 |
2 |
16.0.0.8 |
1024 |
48.0.0.8 |
← |
17 |
0.910000 |
0 |
9 |
1 |
16.0.0.9 |
1024 |
48.0.0.9 |
→ |
18 |
0.930944 |
0 |
9 |
2 |
16.0.0.9 |
1024 |
48.0.0.9 |
← |
19 |
1.010000 |
0 |
a |
1 |
16.0.0.10 |
1024 |
48.0.0.10 |
→ |
20 |
1.030944 |
0 |
a |
2 |
16.0.0.10 |
1024 |
48.0.0.10 |
← |
In this example, the IPG was taken from the pcap file, which is closer to 20 msec and not 50 msec (taken from the configuration file).
#cap_ipg_min : 30 (1)
#cap_override_ipg : 200 (2)
-
Sets the minimum IPG (microseconds) which should be override : ( if (pkt_ipg<cap_ipg_min) { pkt_ipg = cap_override_ipg } )
-
Value to override (microseconds).
In this example the server IP is taken from the template.
- duration : 10.0
generator :
distribution : "seq"
clients_start : "16.0.0.1"
clients_end : "16.0.1.255"
servers_start : "48.0.0.1"
servers_end : "48.0.0.255"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 1
udp_aging : 1
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_ipg : true
#cap_ipg_min : 30
#cap_override_ipg : 200
cap_info :
- name: cap2/dns.pcap
cps : 1.0
ipg : 10000
rtt : 10000
server_addr : "48.0.0.7" (1)
one_app_server : true (2)
w : 1
-
All templates will use the same server.
-
Must be set to "true".
pkt | time sec | fid | flow-pkt-id | client_ip | client_port | server_ip | desc |
---|---|---|---|---|---|---|---|
1 |
0.010000 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.7 |
→ |
2 |
0.030944 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.7 |
← |
3 |
2.010000 |
2 |
1 |
16.0.0.2 |
1024 |
48.0.0.7 |
→ |
4 |
2.030944 |
2 |
2 |
16.0.0.2 |
1024 |
48.0.0.7 |
← |
5 |
3.010000 |
3 |
1 |
16.0.0.3 |
1024 |
48.0.0.7 |
→ |
6 |
3.030944 |
3 |
2 |
16.0.0.3 |
1024 |
48.0.0.7 |
← |
7 |
4.010000 |
4 |
1 |
16.0.0.4 |
1024 |
48.0.0.7 |
→ |
8 |
4.030944 |
4 |
2 |
16.0.0.4 |
1024 |
48.0.0.7 |
← |
9 |
5.010000 |
5 |
1 |
16.0.0.5 |
1024 |
48.0.0.7 |
→ |
10 |
5.030944 |
5 |
2 |
16.0.0.5 |
1024 |
48.0.0.7 |
← |
11 |
6.010000 |
6 |
1 |
16.0.0.6 |
1024 |
48.0.0.7 |
→ |
12 |
6.030944 |
6 |
2 |
16.0.0.6 |
1024 |
48.0.0.7 |
← |
13 |
7.010000 |
7 |
1 |
16.0.0.7 |
1024 |
48.0.0.7 |
→ |
14 |
7.030944 |
7 |
2 |
16.0.0.7 |
1024 |
48.0.0.7 |
← |
15 |
8.010000 |
8 |
1 |
16.0.0.8 |
1024 |
48.0.0.7 |
→ |
16 |
8.030944 |
8 |
2 |
16.0.0.8 |
1024 |
48.0.0.7 |
← |
17 |
9.010000 |
9 |
1 |
16.0.0.9 |
1024 |
48.0.0.7 |
→ |
18 |
9.030944 |
9 |
2 |
16.0.0.9 |
1024 |
48.0.0.7 |
← |
19 |
10.010000 |
a |
1 |
16.0.0.10 |
1024 |
48.0.0.7 |
→ |
20 |
10.030944 |
a |
2 |
16.0.0.10 |
1024 |
48.0.0.7 |
← |
- duration : 10.0
generator :
distribution : "seq"
clients_start : "16.0.0.1" (1)
clients_end : "16.0.0.1"
servers_start : "48.0.0.1"
servers_end : "48.0.0.3"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 1
udp_aging : 1
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_ipg : true
#cap_ipg_min : 30
#cap_override_ipg : 200
cap_info :
- name: cap2/dns.pcap
cps : 1.0
ipg : 10000
rtt : 10000
w : 1
-
Only one client.
pkt | time sec | fid | flow-pkt-id | client_ip | client_port | server_ip | desc |
---|---|---|---|---|---|---|---|
1 |
0.010000 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.1 |
→ |
2 |
0.030944 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.1 |
← |
3 |
2.010000 |
2 |
1 |
16.0.0.1 |
1025 |
48.0.0.2 |
→ |
4 |
2.030944 |
2 |
2 |
16.0.0.1 |
1025 |
48.0.0.2 |
← |
5 |
3.010000 |
3 |
1 |
16.0.0.1 |
1026 |
48.0.0.3 |
→ |
6 |
3.030944 |
3 |
2 |
16.0.0.1 |
1026 |
48.0.0.3 |
← |
7 |
4.010000 |
4 |
1 |
16.0.0.1 |
1027 |
48.0.0.4 |
→ |
8 |
4.030944 |
4 |
2 |
16.0.0.1 |
1027 |
48.0.0.4 |
← |
9 |
5.010000 |
5 |
1 |
16.0.0.1 |
1028 |
48.0.0.5 |
→ |
10 |
5.030944 |
5 |
2 |
16.0.0.1 |
1028 |
48.0.0.5 |
← |
11 |
6.010000 |
6 |
1 |
16.0.0.1 |
1029 |
48.0.0.6 |
→ |
12 |
6.030944 |
6 |
2 |
16.0.0.1 |
1029 |
48.0.0.6 |
← |
13 |
7.010000 |
7 |
1 |
16.0.0.1 |
1030 |
48.0.0.7 |
→ |
14 |
7.030944 |
7 |
2 |
16.0.0.1 |
1030 |
48.0.0.7 |
← |
15 |
8.010000 |
8 |
1 |
16.0.0.1 |
1031 |
48.0.0.8 |
→ |
16 |
8.030944 |
8 |
2 |
16.0.0.1 |
1031 |
48.0.0.8 |
← |
17 |
9.010000 |
9 |
1 |
16.0.0.1 |
1032 |
48.0.0.9 |
→ |
18 |
9.030944 |
9 |
2 |
16.0.0.1 |
1032 |
48.0.0.9 |
← |
19 |
10.010000 |
a |
1 |
16.0.0.1 |
1033 |
48.0.0.10 |
→ |
20 |
10.030944 |
a |
2 |
16.0.0.1 |
1033 |
48.0.0.10 |
← |
In this case there is only one client so only ports are used to distinc the flows you need to be sure that you have enogth free sockets when running TRex in high rates
Active-flows : 0 Clients : 1 <1> Socket-util : 0.0000 % (2)
Open-flows : 1 Servers : 254 Socket : 1 Socket/Clients : 0.0
drop-rate : 0.00 bps
-
Number of clients
-
sockets utilization (should be lowwer than 20%, elarge the number of clients in case of an issue).
w
is a tunable to the IP clients/servers generator. w=1 is the default behavior.
Setting w=2
configures a burst of two allocations from the same client. See the following example.
- duration : 10.0
generator :
distribution : "seq"
clients_start : "16.0.0.1"
clients_end : "16.0.0.10"
servers_start : "48.0.0.1"
servers_end : "48.0.0.3"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 1
udp_aging : 1
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_ipg : true
#cap_ipg_min : 30
#cap_override_ipg : 200
cap_info :
- name: cap2/dns.pcap
cps : 1.0
ipg : 10000
rtt : 10000
w : 2 (1)
-
Two clients will be allocated from the same template.
pkt | time sec | fid | flow-pkt-id | client_ip | client_port | server_ip | desc |
---|---|---|---|---|---|---|---|
1 |
0.010000 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.1 |
→ |
2 |
0.030944 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.1 |
← |
3 |
2.010000 |
2 |
1 |
16.0.0.1 |
1025 |
48.0.0.1 |
→ |
4 |
2.030944 |
2 |
2 |
16.0.0.1 |
1025 |
48.0.0.1 |
← |
5 |
3.010000 |
3 |
1 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
6 |
3.030944 |
3 |
2 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
7 |
4.010000 |
4 |
1 |
16.0.0.2 |
1025 |
48.0.0.2 |
→ |
8 |
4.030944 |
4 |
2 |
16.0.0.2 |
1025 |
48.0.0.2 |
← |
9 |
5.010000 |
5 |
1 |
16.0.0.3 |
1024 |
48.0.0.3 |
→ |
10 |
5.030944 |
5 |
2 |
16.0.0.3 |
1024 |
48.0.0.3 |
← |
11 |
6.010000 |
6 |
1 |
16.0.0.3 |
1025 |
48.0.0.3 |
→ |
12 |
6.030944 |
6 |
2 |
16.0.0.3 |
1025 |
48.0.0.3 |
← |
13 |
7.010000 |
7 |
1 |
16.0.0.4 |
1024 |
48.0.0.4 |
→ |
14 |
7.030944 |
7 |
2 |
16.0.0.4 |
1024 |
48.0.0.4 |
← |
15 |
8.010000 |
8 |
1 |
16.0.0.4 |
1025 |
48.0.0.4 |
→ |
16 |
8.030944 |
8 |
2 |
16.0.0.4 |
1025 |
48.0.0.4 |
← |
17 |
9.010000 |
9 |
1 |
16.0.0.5 |
1024 |
48.0.0.5 |
→ |
18 |
9.030944 |
9 |
2 |
16.0.0.5 |
1024 |
48.0.0.5 |
← |
19 |
10.010000 |
a |
1 |
16.0.0.5 |
1025 |
48.0.0.5 |
→ |
20 |
10.030944 |
a |
2 |
16.0.0.5 |
1025 |
48.0.0.5 |
← |
The following example combines elements of HTTP and DNS templates:
- duration : 1.0
generator :
distribution : "seq"
clients_start : "16.0.0.1"
clients_end : "16.0.0.10"
servers_start : "48.0.0.1"
servers_end : "48.0.0.3"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 1
udp_aging : 1
mac : [0x00,0x00,0x00,0x01,0x00,0x00]
cap_ipg : true
cap_info :
- name: cap2/dns.pcap
cps : 10.0 (1)
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_http_browsing_0.pcap
cps : 2.0 (1)
ipg : 10000
rtt : 10000
w : 1
-
Same CPS for both templates.
This creates the following output:
pkt | time sec | template | fid | flow-pkt-id | client_ip | client_port | server_ip | desc |
---|---|---|---|---|---|---|---|---|
1 |
0.010000 |
0 |
1 |
1 |
16.0.0.1 |
1024 |
48.0.0.1 |
→ |
2 |
0.030944 |
0 |
1 |
2 |
16.0.0.1 |
1024 |
48.0.0.1 |
← |
3 |
0.093333 |
1 |
2 |
1 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
4 |
0.104362 |
1 |
2 |
2 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
5 |
0.115385 |
1 |
2 |
3 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
6 |
0.115394 |
1 |
2 |
4 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
7 |
0.126471 |
1 |
2 |
5 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
8 |
0.126484 |
1 |
2 |
6 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
9 |
0.137530 |
1 |
2 |
7 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
10 |
0.148609 |
1 |
2 |
8 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
11 |
0.148621 |
1 |
2 |
9 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
12 |
0.148635 |
1 |
2 |
10 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
13 |
0.159663 |
1 |
2 |
11 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
14 |
0.170750 |
1 |
2 |
12 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
15 |
0.170762 |
1 |
2 |
13 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
16 |
0.170774 |
1 |
2 |
14 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
17 |
0.176667 |
0 |
3 |
1 |
16.0.0.3 |
1024 |
48.0.0.3 |
→ |
18 |
0.181805 |
1 |
2 |
15 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
19 |
0.181815 |
1 |
2 |
16 |
16.0.0.2 |
1024 |
48.0.0.2 |
→ |
20 |
0.192889 |
1 |
2 |
17 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
21 |
0.192902 |
1 |
2 |
18 |
16.0.0.2 |
1024 |
48.0.0.2 |
← |
- Template_id
-
0: DNS template 1: HTTP template
The output above illustrates two HTTP flows and ten DNS flows in 1 second, as expected.
SFR traffic includes a combination of traffic templates. This traffic mix in the example below was defined by SFR France. This SFR traffic profile is used as our traffic profile for our ASR1k/ISR-G2 benchmark. It is also possible to use EMIX instead of IMIX traffic.
The traffic was recorded from a Spirent C100 with a Pagent that introduce 10msec delay from client and server side.
- duration : 0.1
generator :
distribution : "seq"
clients_start : "16.0.0.1"
clients_end : "16.0.1.255"
servers_start : "48.0.0.1"
servers_end : "48.0.20.255"
clients_per_gb : 201
min_clients : 101
dual_port_mask : "1.0.0.0"
tcp_aging : 0
udp_aging : 0
mac : [0x0,0x0,0x0,0x1,0x0,0x00]
cap_ipg : true
cap_info :
- name: avl/delay_10_http_get_0.pcap
cps : 404.52
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_http_post_0.pcap
cps : 404.52
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_https_0.pcap
cps : 130.8745
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_http_browsing_0.pcap
cps : 709.89
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_exchange_0.pcap
cps : 253.81
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_mail_pop_0.pcap
cps : 4.759
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_mail_pop_1.pcap
cps : 4.759
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_mail_pop_2.pcap
cps : 4.759
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_oracle_0.pcap
cps : 79.3178
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_rtp_160k_full.pcap
cps : 2.776
ipg : 10000
rtt : 10000
w : 1
one_app_server : false
plugin_id : 1 (2)
- name: avl/delay_10_rtp_250k_full.pcap
cps : 1.982
ipg : 10000
rtt : 10000
w : 1
one_app_server : false
plugin_id : 1
- name: avl/delay_10_smtp_0.pcap
cps : 7.3369
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_smtp_1.pcap
cps : 7.3369
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_smtp_2.pcap
cps : 7.3369
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_video_call_0.pcap
cps : 11.8976
ipg : 10000
rtt : 10000
w : 1
one_app_server : false
- name: avl/delay_10_sip_video_call_full.pcap
cps : 29.347
ipg : 10000
rtt : 10000
w : 1
plugin_id : 2 (1)
one_app_server : false
- name: avl/delay_10_citrix_0.pcap
cps : 43.6248
ipg : 10000
rtt : 10000
w : 1
- name: avl/delay_10_dns_0.pcap
cps : 1975.015
ipg : 10000
rtt : 10000
w : 1
wlength : 1
-
Plugin for SIP protocol, used to replace the IP/port in the control flow base on the data-flow.
-
Plugin for RTSP protocol used to replace the IP/port in the control flow base on the data-flow.
TRex commands typically include the following main arguments, but only -f
and -d
are required.
$.sudo /t-rex-64 -f [traffic_yaml] -m [muti] -d [duration] -l [Hz=1000] -c [cores]
- -f=TRAFIC_YAML_FILE
-
YAML traffic configuration file.
- -m=MUL
-
Factor for bandwidth (multiplies the CPS of each template by this value).
- -d=DURATION
-
Duration of the test (sec). Default: 0
- -l=HZ
-
Rate (Hz) for running the latency daemon. Example: -l 1000 runs 1000 pkt/sec from each interface. A value of zero (0) disables the latency check.
- -c=CORES
-
Number of cores. Use 4 for TRex 40Gb/sec. Monitor the CPU% of TRex - it should be ~50%.
The full reference can be found here
$.sudo /t-rex-64 -f cap2/simple_http.yaml -c 4 -m 100 -d 100
$.sudo /t-rex-64 -f cap2/simple_http.yaml -c 4 -m 100 -d 100 -l 1000
$.sudo /t-rex-64 -f avl/sfr_delay_10_1g.yaml -c 4 -m 35 -d 100 -p
$.sudo /t-rex-64 -f avl/sfr_delay_10_1g.yaml -c 4 -m 20 -d 100 -l 1000
$.sudo /t-rex-64 -f avl/sfr_delay_10_1g_no_bundeling.yaml -c 4 -m 20 -d 100 -l 1000 --ipv6
$.sudo /t-rex-64 -f cap2/simple_http.yaml -c 4 -m 100 -d 100 -l 1000 --learn
$.sudo /t-rex-64 -f cap2/imix_fast_1g.yaml -c 4 -m 1 -d 100 -l 1000
$.sudo /t-rex-64 -f cap2/imix_fast_1g_100k.yaml -c 4 -m 1 -d 100 -l 1000
$.sudo /t-rex-64 -f cap2/imix_64.yaml -c 4 -m 1 -d 100 -l 1000
name | description |
---|---|
cap2/dns.yaml |
simple dns pcap file |
cap2/http_simple.yaml |
simple http cap file |
avl/sfr_delay_10_1g_no_bundeling.yaml |
sfr traffic profile capture from Avalanche - Spirent without bundeling support with RTT=10msec ( a delay machine), this can be used with --ipv6 and --learn mode |
avl/sfr_delay_10_1g.yaml |
head-end sfr traffic profile capture from Avalanche - Spirent with bundeling support with RTT=10msec ( a delay machine), it is normalized to 1Gb/sec for m=1 |
avl/sfr_branch_profile_delay_10.yaml |
branch sfr profile capture from Avalanche - Spirent with bundeling support with RTT=10msec it, is normalized to 1Gb/sec for m=1 |
cap2/imix_fast_1g.yaml |
imix profile with 1600 flows normalized to 1Gb/sec. |
cap2/imix_fast_1g_100k_flows.yaml |
imix profile with 100k flows normalized to 1Gb/sec. |
cap2/imix_64.yaml |
64byte UDP packets profile |
pkt,time sec,template,fid,flow-pkt-id,client_ip,client_port,server_ip ,desc 1 , 0.010000 , 0 , 1 , 1 , 16.0.0.1 , 1024 , 48.0.0.1 , → 2 , 0.210000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 3 , 0.310000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 4 , 0.310000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 5 , 0.510000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 6 , 0.610000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 7 , 0.610000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 8 , 0.810000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 9 , 0.910000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 10 , 0.910000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 11 , 1.110000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 12 , 1.210000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 13 , 1.210000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 14 , 1.410000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 15 , 1.510000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 16 , 1.510000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 17 , 1.710000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 18 , 1.810000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 19 , 1.810000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 20 , 2.010000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 21 , 2.110000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 22 , 2.110000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 23 , 2.310000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 24 , 2.410000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 25 , 2.410000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 26 , 2.610000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 27 , 2.710000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , → 28 , 2.710000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 29 , 2.910000 , 0 , 2 , 0 , 16.0.0.2 , 1024 , 48.0.0.2 , → 30 , 3.010000 , 0 , 3 , 0 , 16.0.0.3 , 1024 , 48.0.0.3 , → 31 , 3.010000 , 0 , 1 , 0 , 16.0.0.1 , 1024 , 48.0.0.1 , →
* Average CPS: 10 packets per second (30 packets in 3 sec). * Total of 3 flows, as specified in the configuration file. * The flows come in bursts, as specified in the configuration file. === Clients/Servers IP allocation scheme Currently, there is one global IP pool for clients and servers. It serves all templates. all the templates will allocate IP from this global pool.
Each TRex client/server "dual-port" (pair of ports, such as port 0 for client, port 1 for server) has it own mask offset taken from the YAML. The mask offset is called Example: [source,python] ---- generator : distribution : "seq" clients_start : "16.0.0.1" clients_end : "16.0.0.255" servers_start : "48.0.0.1" servers_end : "48.0.0.255" dual_port_mask : "1.0.0.0" <1> tcp_aging : 0 udp_aging : 0 ---- <1> Mask to add per dual-port pair. The reason we introduce dual_port_mask is to make static route configurable. With this mask, different ports has different prefix. With four ports, TRex produces the following output: [source,python] ---- dual-0 (0,1) -→ C (16.0.0.1-16.0.0.128 ) <→ S( 48.0.0.1 - 48.0.0.128) dual-1 (2,3) -→ C (17.0.0.129-17.0.0.255 ) <→ S( 49.0.0.129 - 49.0.0.255) + mask ("1.0.0.0") ---- In the case of setting dual-port_mask as 0.0.0.0, both ports will use the same range of ip. With four ports and dual_port_mask as 0.0.0.0, the ip range is : [source,python] ---- dual-0 (0,1) -→ C (16.0.0.1-16.0.0.128 ) <→ S( 48.0.0.1 - 48.0.0.128) dual-1 (2,3) -→ C (16.0.0.129-16.0.0.255 ) <→ S( 48.0.0.129 - 48.0.0.255) ---- - Number of clients : 255 - Number of servers : 255 - The mask defined by dual_port_mask (1.0.0.0) is added for each dual-port pair, but the total number of clients/servers from YAML will be constant and does not depend on the amount of dual ports. - TCP/UDP aging is required when the number of clients is very small and the template defines a very long duration. This is the time it takes to return the socket to the pool. - In the current version, the only option for distribution is "seq". Router configuration for this mode::: PBR is not necessary. The following configuration is sufficient. [source,python] ---- interface TenGigabitEthernet1/0/0 <1> mac-address 0000.0001.0000 mtu 4000 ip address 11.11.11.11 255.255.255.0 ! ` interface TenGigabitEthernet1/1/0 <2> mac-address 0000.0001.0000 mtu 4000 ip address 22.11.11.11 255.255.255.0 ! interface TenGigabitEthernet1/2/0 <3> mac-address 0000.0001.0000 mtu 4000 ip address 33.11.11.11 255.255.255.0 ! interface TenGigabitEthernet1/3/0 <4> mac-address 0000.0001.0000 mtu 4000 ip address 44.11.11.11 255.255.255.0 load-interval 30 ip route 16.0.0.0 255.0.0.0 22.11.11.12 ip route 48.0.0.0 255.0.0.0 11.11.11.12 ip route 17.0.0.0 255.0.0.0 44.11.11.12 ip route 49.0.0.0 255.0.0.0 33.11.11.12 ---- <1> Connected to TRex port 0 (client side) <2> Connected to TRex port 1 (server side) <3> Connected to TRex port 2 (client side) <4> Connected to TRex port 3(server side) One server::: To support a template with one server, you can add a new YAML server_addr ip. Each dual-port pair will be assigned a separate server (in compliance with the mask). [source,python] ---- - name: cap2/dns.pcap cps : 1.0 ipg : 10000 rtt : 10000 w : 1 server_addr : "48.0.0.1" <1> one_app_server : true <2> wlength : 1 ---- <1> Server IPv4 address. <2> Enable one server mode. w/wlength::: not require to configure them, user 1 new statistic::: [source,python] ---- Active-flows : 19509 Clients : 504 Socket-util : 0.0670 % Open-flows : 247395 Servers : 65408 Socket : 21277 Socket/Clients : 42.2 ---- [NOTE] ===================================================================== * No backward compatibility with the old generator YAML format. * When using -p option, TRex will not comply with the static route rules. Server-side traffic may be sent from the client side (port 0) and vice-versa. Use the -p option only with PBR configuration when the router, switch p1<→p2. * VLAN (sub interface feature) does not comply with static route rules. Use it only with PBR. VLAN0 <→ VALN1 per interface vlan : { enable : 1 , vlan0 : 100 , vlan1 : 200 } * Limitation: When using a template with plugins (bundles), the number of servers must be higher than the number of clients. ===================================================================== ==== More Details about IP allocations Each time a new flow is creaed, TRex allocates a new Client IP/port and Server IP. This 3-tuple should be distinct among active flows. Currently, only sequcency distribution is supported in IP allocation. That means the IP address is increased one by one. Let’s say if we have 2 candidate IPs in the pool: 16.0.0.1 and 16.0.0.2. So the sequence of allocated clients should be something like this: [source,python] ---- 16.0.0.0.1 [1024] 16.0.0.0.2 [1024] 16.0.0.0.1 [1025] 16.0.0.0.2 [1025] ---- ==== How to decide the PPS and BPS - Example of one flow with 4 packets - Green are first packet of flow - Lets say the client ip pool starts from 16.0.0.1, and the distribution is seq. \(Total PPS = \sum_{k=0}^{n}(CPS_{k}\times {flow\_pkts}_{k})\) \(Concurrent flow = \sum_{k=0}^{n}CPS_{k}\times flow\_duration_k \) The above fomulars can be used to calculate the PPS. The TRex throughput depends on the PPS calculated above and the value of m (a multiplier assigned by TRex cli). The m value is a multiplier of total pcap files CPS. CPS of pcap file is configured on yaml file. Let’s take a simple example as below. [source,python] ---- cap_info : - name: avl/first.pcap < — has 2 packets cps : 102.0 ipg : 10000 rtt : 10000 w : 1 - name: avl/second.pcap < — has 20 packets cps : 50.0 ipg : 10000 rtt : 10000 w : 1 ---- The throughput is: 'm*(CPS_1*flow_pkts+CPS_2*flow_pkts)' So if the m is set as 1, the total PPS is : 102*2+50*20 = 1204 PPS. The BPS depends on the packet size. You can refer to your packet size and get the BPS = PPS*Packet_size. ==== Client/Server IP allocation We have several features under development for IP allocation. - 1) per-template generator Multiple generators can be defined and assigned to different pcap file templates. The YAML configuration is something like this: [source,python] ---- generator : distribution : "seq" clients_start : "16.0.0.1" clients_end : "16.0.1.255" servers_start : "48.0.0.1" servers_end : "48.0.20.255" clients_per_gb : 201 min_clients : 101 dual_port_mask : "1.0.0.0" tcp_aging : 0 udp_aging : 0 generator_clients : - name : "c1" distribution : "random" ip_start : "38.0.0.1" ip_end : "38.0.1.255" clients_per_gb : 201 min_clients : 101 dual_port_mask : "1.0.0.0" tcp_aging : 0 udp_aging : 0 generator_servers : - name : "s1" distribution : "seq" ip_start : "58.0.0.1" ip_end : "58.0.1.255" dual_port_mask : "1.0.0.0 cap_info : - name: avl/delay_10_http_get_0.pcap cps : 404.52 ipg : 10000 rtt : 10000 w : 1 - name: avl/delay_10_http_post_0.pcap client_pool : "c1" server_pool : "s1" cps : 404.52 ipg : 10000 rtt : 10000 w : 1 ---- - 2) More distributions will be supported (normal distribution, random distribution, etc) Currently, only sequcence and random are supported. - 3) Histogram of tuple pool will be supported This feature gives user more flexibility to define the IP generator. [source,python] ---- generator : client_pools: - name : "a" distribution : "seq" clients_start : "16.0.0.1" clients_end : "16.0.1.255" tcp_aging : 0 udp_aging : 0 - name : "b" distribution : "random" clients_start : 26.0.0.1" clients_end : 26.0.1.255" tcp_aging : 0 udp_aging : 0 - name : "c" pools_list : - name:"a" probability: 0.8 - name:"b" probability: 0.2 ---- === Measure Jitter/Latency To measure jitter/latency on high priorty packets (one SCTP flow), use [source,python] ---- Cpu Utilization : 0.1 % if |
tx_ok , rx_ok , rx ,error, average , max , Jitter<1> ,max |
, , check, , latency(usec),latency (usec) ,(usec) , window -------------------------------------------------------------------------------------- 0 |
1002, 1002, 2501, 0, 61 , 70, 3 |
60 60 1 |
1002, 1002, 2012, 0, 56 , 63, 2 |
50 51 2 |
1002, 1002, 2322, 0, 66 , 74, 5 |
68 59 3 |
1002, 1002, 1727, 0, 58 , 68, 2 |
52 49 Rx Check stats enabled --------------------------------------------------------------------------------------- rx check: avg/max/jitter latency, 94 , 744, 49<1> |
252 287 3 active flows: 10, fif: 308, drop: 0, errors: 0 --------------------------------------------------------------------------------------- ---- <1> Jitter information |